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The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost

well-ordered), but for many other natural non-zero-dimensional spaces (including the

space of reals) this structure is much more complicated. We consider weaker notions of

reducibility, including the so-called ∆0
α-reductions, and try to find for various natural

topological spaces X the least ordinal αX such that for every αX ≤ β < ω1 the

degree-structure induced on X by the ∆0
β-reductions is simple (i.e. similar to the Wadge

hierarchy on the Baire space). We show that αX ≤ ω for every quasi-Polish space X,

that αX ≤ 3 for quasi-Polish spaces of dimension 6=∞, and that this last bound is in

fact optimal for many (quasi-)Polish spaces, including the real line and its powers.
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1. Introduction

A subset A of the Baire space N = ωω is Wadge reducible to a subset B if and only if

A = f−1(B) for some continuous function f : N → N . The structure of Wadge degrees

(i.e. the quotient-structure of (P(N ),≤W)) is fairly well understood and turns our to

be rather simple. In particular, the structure (B(N ),≤W) of the Wadge degrees of Borel

sets is semi-well-ordered by (Wadge 1984), i.e. it has no infinite descending chain and

for every A,B ∈ B(N ) we have A ≤W B or N \ B ≤W A, which implies that the

antichains have size at most two. More generally: if all the Boolean combinations of

sets in a pointclass Γ ⊆ P(N ) (closed under continuous preimages) are determined,

then the Wadge structure restricted to Γ is semi-well-ordered. For example, under the

Axiom of Projective Determinacy PD the structure of the Wadge degrees of projective

sets is semi-well-ordered, and under the Axiom of Determinacy AD, the whole Wadge

degree-structure remains semi-well-ordered.

The Wadge degree-structure refines the structure of levels (more precisely, of the Wadge

complete sets in those levels) of several important hierarchies, like the stratification of

the Borel sets in Σ0
α and Π0

α sets, or the Hausdorff-Kuratowski difference hierarchies, and

serves as a nice tool to measure the topological complexity of many problems of interest

in descriptive set theory (DST) (Kechris 1995), automata theory (Perrin and Pin 2004;

Selivanov 2008b), and computable analysis (CA) (Weihrauch 2000).

There are several reasons and several ways to generalize the Wadge reducibility ≤W

on the Baire space. For example, one can consider

(1) other natural classes of reducing functions in place of the continuous functions;

(2) more complicated topological spaces instead of N (the notion of Wadge reducibility

makes sense for arbitrary topological spaces);

(3) reducibility between functions rather than reducibility between sets (the sets may be

identified with their characteristic functions);

(4) more complicated reductions than the many-one reductions by continuous functions.

In any of the mentioned directions a certain progress has been achieved, although in

many cases the situation typically becomes more complicated than in the classical case.

For what concerns the possibility of using other sets of functions as reducibilities

between subsets of N , in a series of papers, A. Andretta, D. A. Martin, and L. Motto

Ros considered the degree-structures obtained by replacing continuous functions with

one of the following classes:

(a) the class of Borel functions, i.e. of those f : N → N such that f−1(U) is Borel for

every open (equivalently, Borel) set U (see (Andretta and Martin 2003));

(b) the class Dα of ∆0
α-functions (for α < ω1), i.e. of those f : N → N such that f−1(D) ∈



Wadge-like reducibilities on arbitrary quasi-Polish spaces 3

∆0
α for every D ∈∆0

α (see (Andretta 2006) for the case α = 2, and (Motto Ros 2009)

for the general case);

(c) for γ < ω1 an additively closed ordinal, the collection Bγ of all functions of Baire

class < γ, i.e. of those f : N → N for which there is α < γ such that f−1(U) ∈ Σ0
α

for every open set U (see (Motto Ros 2010a))†;

(d) the class of Σ1
n functions (for n ∈ ω), i.e. the class of those f : N → N such that

f−1(U) ∈ Σ1
n for every open (equivalently, Σ1

n) set U (see (Motto Ros 2010b)).

It turns out that the degree-structures resulting from (a)–(c), as for the Wadge degrees

case, are all semi-well-ordered when restricted to the class of Borel sets or, provided

that all Boolean combinations of sets in Γ are determined, to any pointclass Γ ⊆P(N )

closed under continuous preimages (hence, in particular, to the entire P(N ) when AD is

assumed),‡ and that under the full AD also the degree-structures resulting from (d) are

semi-well-ordered (on the entire P(N )): thus, we obtain a series of natural classifications

of subsets of the Baire space which are weaker than the Wadge one.

Concerning Polish spaces different from the Baire space, using the methods developed

in (Wadge 1984) it is immediate to check that the structure of Wadge degrees on any

zero-dimensional Polish space remains semi-well-ordered (this follows also from Proposi-

tion 5.4). On the other hand, P. Hertling showed in (Hertling 1996) that the Wadge hier-

archy on the real line R is much more complicated than the structure of Wadge degrees on

the Baire space. In particular, there are infinite antichains and infinite descending chains

in the structure of Wadge degrees of ∆0
2 sets. Recently, this result has been considerably

strengthened in (Ikegami et al. 2012). Moreover, P. Schlicht also showed in (Schlicht

2012) that the structure of Wadge degrees on any non zero-dimensional metric space

must contain infinite antichains, and V. Selivanov showed in (Selivanov 2005) that the

Wadge hierarchy is more complicated also when considering other natural topological

spaces (e.g. the so-called ω-algebraic domains).

As already noted, if one passes from continuous reductions between sets to continuous

reductions between functions, the situation becomes much more intricate. Even when

considering the simplest possible generalization, namely continuous reductions between

partitions of the Baire space into 3 ≤ k ∈ ω subsets, the degree-structure obtained is

rather complicated, e.g. there are antichains of arbitrarily large finite size. On the other

hand, it is still a well-quasi-order (briefly, a wqo), i.e. it has neither infinite descending

chains nor infinite antichains: hence it can still serve as a scale to measure the topological

complexity of k-partitions of the Baire space — see the end of Subsection 2.6 and the

references contained therein.

In the fourth direction (more complicated reductions), the so called Weihrauch re-

ducibility became recently rather popular: it turns out to be very useful in characterizing

the topological complexity of some important computational problems, and also in under-

standing the computational content of some important classical mathematical theorems

† Notice that we cannot take a single level of the Baire stratification because in general it is not closed
under composition, and hence does not give a preorder when used as reducibility between sets of reals.

‡ In fact, for the cases of Borel functions and ∆0
α-functions, the corresponding degree-structures are

even isomorphic to the Wadge one.
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— see e.g. (Hertling 1996; Brattka and Gherardi 2011a; Brattka and Gherardi 2011b;

Kudinov et al. 2010).

In this paper we aim to make the first three kinds of generalizations interact with each

other, namely we will consider some weaker versions of the Wadge reducibility (including

the ones mentioned above), and study the degree structures induced by them on arbitrary

quasi-Polish spaces, a collection of spaces recently identified in (de Brecht 2011) by M. de

Brecht as a natural class of spaces for DST and CA. Each of these degree-structures

should be intended as a tool for measuring the complexity of subsets (or partitions)

of the space under consideration: a structure like the Wadge one is nearly optimal for

this goal, but, as already noticed, we get a reasonable notion of complexity also if the

structure is just a wqo. If instead the degree structure contains infinite antichains but is

well-founded, then we can at least assign a rank to the degrees (even if this rank could be

not completely meaningful), while if it is also ill-founded it becomes completely useless as

a notion of classification. These considerations justify the following terminology: a degree-

structure obtained by considering a notion of reducibility (between sets or partitions) on

a topological space will be called

- very good if it is semi-well-ordered;
- good if it is a wqo;
- bad if it contains infinite antichains;
- very bad if it contains both infinite descending chains and infinite antichains.

By the results mentioned above, the Wadge hierarchy on any non zero-dimensional

Polish space is always bad, but we will show that for many other natural reducibilities,

the corresponding hierarchy is very good on a great number of spaces. This is obtained

by computing the minimal complexity of an isomorphism between such spaces and the

Baire space. In particular, after recalling some preliminaries in Section 2 and introducing

various reducibility notions in Section 3, we will show in Section 4 that all uncountable

quasi-Polish spaces are pairwise Dω-isomorphic, and that any quasi-Polish space of topo-

logical dimension 6= ∞ is even D3-isomorphic to N (and that, in general, the indices ω

and 3 cannot be lowered). This fact, together with the results from (Motto Ros 2009;

Motto Ros 2010a), implies that the degree-structures induced by the classes of functions

Dα and Bγ (where γ < ω1 is additively closed) on any uncountable quasi-Polish space

are very good (when restricted to the degrees of Borel sets, or even, under corresponding

determinacy assumptions, to the degrees of sets in any larger pointclass Γ ⊆ P(N ))

whenever α ≥ ω, and that the same is true also for α ≥ 3 when considering quasi-Polish

spaces of dimension 6=∞. In Section 5 we will show that these results are nearly optimal

by showing that the degree-structure induced by the class of functions D2 is (very) bad

on many natural Polish spaces (like the real line R and its powers), and that the Wadge

hierarchy can fail to be very good also on extremely simple countable quasi-Polish spaces.

2. Notation and preliminaries

In this section we introduce a great deal of notation that will be used throughout the

paper. The notation for pointclasses and for isomorphisms between topological spaces

will be introduced at the beginning of Sections 3 and 4, respectively.
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2.1. Notation

Unless otherwise specified, we will always work in ZF + DC, i.e. in the usual Zermelo-

Frænkel set theory together with the Axiom of Dependent Choice.

We freely use the standard set-theoretic notation like |X| for the cardinality of X,

X × Y for the Cartesian product of X and Y , X t Y for the disjoint union of X and

Y , Y X for the set of all functions f : X → Y , and P(X) for the set of all subsets of X.

Given a product X × Y we denote by π0 (respectively, π1) the projection on the first

(respectively, the second) coordinate. For A ⊆ X, A denotes the complement X \ A of

A in X. For A ⊆ P(X), BC(A) denotes the Boolean closure of A, i.e. the set of finite

Boolean combinations of sets in A. We identify each nonzero natural number n with

the set of its predecessors {0, . . . , n − 1}, and the set of natural numbers, which will be

denoted by ω, with its order type under <. The first uncountable ordinal is denoted by

ω1, while the class of all ordinal numbers is denoted by On. Given a set X and a natural

number i ∈ ω, we let [X]i = {Y ⊆ X | |Y | = i}. Given an arbitrary partially ordered set

(X,≤) (briefly, a poset), we denote by < its strict part, i.e. the relation on X defined by

x < y ⇐⇒ x ≤ y ∧ x 6= y.

2.2. Spaces and pointclasses

We assume the reader be familiar with the basic notions of topology. The collection of all

open subsets of a space X (i.e. the topology of X) is denoted by τX or, when the space

is clear from the context, simply by τ . We abbreviate “topological space” to “space” and

denote by X the collection of all (topological) spaces. Let Y ⊆X : we say that X ∈X

is universal for Y if every Y ∈ Y can be topologically embedded into X, i.e. there is a

subspace X ′ ⊆ X such that Y is homeomorphic to X ′ (where X ′ is endowed with the

relative topology inherited from X). A space X is connected if there are no nonempty

clopen proper subsets of X, and totally disconnected if every connected subset contains

at most one point. A space X is called locally connected if every element has arbitrarily

small connected open neighborhoods. A space X is called σ-compact if it can be written

as a countable union of compact sets. For any space X, define the transfinite descending

sequence 〈X(α) | α ∈ On〉 of closed subsets of X as follows: X(0) = X, X(α+1) = the set

of non-isolated points of X(α) (where x is an isolated point of a space X if {x} is open in

X), and X(α) =
⋂
{X(β) | β < α} if α is a limit ordinal. The space X is called scattered

if and only if
⋂
α∈On X

(α) = ∅.
Let N = ωω be the set of all infinite sequences of natural numbers (i.e. of all functions

ξ : ω → ω). Let ω∗ be the set of finite sequences of elements of ω, including the empty

sequence. For σ ∈ ω∗ and ξ ∈ N , we write σ v ξ to denote that σ is an initial segment

of ξ. We denote the concatenation of σ and ξ by σξ = σ · ξ , and the set of all extensions

of σ in N by σ · N . For ξ ∈ N , we can write ξ = ξ(0)ξ(1) · · · where ξ(i) ∈ ω for each

i < ω. Notations in the style of regular expressions like 0ω, 0m1n or 0∗1 have the obvious

standard meaning: for example, 0ω is the ω-sequence constantly equal to 0, 0m1n is the

sequence formed by m-many 0’s followed by n-many 1’s, 0∗1 = {0m1 | m ∈ ω} is the set
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of all sequences constituted by a finite (possibly empty) sequence of 0’s followed by (a

unique) 1, and so on.

When we endow N with the product of the discrete topologies on ω we obtain the so-

called Baire space. This topology coincides with the topology generated by the collection

of sets of the form σ · N for σ ∈ ω∗. The Baire space is of primary interest for DST

and CA: its importance stems from the fact that many countable objects are coded

straightforwardly by elements of N , and it has very specific topological properties. In

particular, it is a perfect zero-dimensional space and the spaces N 2, Nω, ω × N =

N tN t . . . (endowed with the product topology) are all homeomorphic to N .

The subspace C = 2ω of N formed by the infinite binary strings (endowed with the

relative topology inherited from N ) is known as the Cantor space. In this paper, we

will also consider the space ω (with the discrete topology), the space R of reals (with

the standard topology), and the space of irrationals number (with the relative topology

inherited from R), which is homeomorphic to N .

A pointclass on the space X is a collection Γ(X) of subsets of X. A family of point-

classes is a family Γ = {Γ(X) | X ∈ X } indexed by arbitrary topological spaces such

that each Γ(X) is a pointclass on X and Γ is closed under continuous preimages, i.e.

f−1(A) ∈ Γ(X) for every A ∈ Γ(Y ) and every continuous function f : X → Y (families of

pointclasses are sometimes called boldface pointclasses by other authors). In particular,

any pointclass Γ(X) in such a family is downward closed under the Wadge reducibility

on X.

Trivial examples of families of pointclasses are E ,F , where E(X) = {∅} and F(X) =

{X} for any space X ∈ X . Another basic example is given by the collection {τX | X ∈
X } of the topologies of all the spaces.

Finally, we define some operations on families of pointclasses which are relevant to hi-

erarchy theory. The usual set-theoretic operations will be applied to the families of point-

classes pointwise: for example, the union
⋃
i Γi of the families of pointclasses Γ0,Γ1, . . .

is defined by (
⋃
i Γi)(X) =

⋃
i Γi(X). A large class of such operations is induced by the

set-theoretic operations of L. V. Kantorovich and E. M. Livenson which are now better

known under the name “ω-Boolean operations” (see (Selivanov 2011) for the general def-

inition). Among them are the operation Γ 7→ Γσ, where Γ(X)σ is the set of all countable

unions of sets in Γ(X), the operation Γ 7→ Γc, where Γ(X)c is the set of all complements

of sets in Γ(X), and the operation Γ 7→ Γd, where Γ(X)d is the set of all differences of

sets in Γ(X).

2.3. Classical hierarchies in arbitrary spaces

First we recall from (Selivanov 2004) the definition of the Borel hierarchy in arbitrary

spaces.

Definition 2.1. For α < ω1, define the family of poinclasses Σ0
α = {Σ0

α(X) | X ∈ X }
by induction on α as follows: Σ0

0(X) = {∅}, Σ0
1(X) = τX , and Σ0

2(X) = ((Σ0
1(X))d)σ

is the collection of all countable unions of differences of open sets. For α > 2, Σ0
α(X) =

(
⋃
β<α(Σ0

β(X))c)σ is the class of countable unions of sets in
⋃
β<α(Σ0

β(X))c).
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We also let Π0
β(X) = (Σ0

β(X))c and ∆0
α = Σ0

α ∩Π0
α. We call a set proper Σ0

β(X) if it

is in Σ0
β(X) \Π0

β(X).

Notice that by definition Σ0
0 = E and Π0

0 = F . When λ < ω1 is a limit ordinal, we let

Σ0
<λ =

⋃
α<λ Σ0

α, and similarly Π0
<λ =

⋃
α<λ Π0

α and ∆0
<λ =

⋃
α<λ ∆0

α. Notice that all

of Σ0
<λ, Π0

<λ and ∆0
<λ are families of pointclasses as well.

The sequence 〈Σ0
α(X),Π0

α(X),∆0
α(X) | α < ω1〉 is called the Borel hierarchy of X.

The pointclasses Σ0
α(X), Π0

α(X) are the non-selfdual levels of the hierarchy (i.e. they are

the levels which are not closed under complementation), while the pointclasses ∆0
α(X) =

Σ0
α(X)∩Π0

α(X) are the self-dual levels (as is usual in DST, we will apply this terminology

also to the levels of the other hierarchies considered below). The pointclass B(X) of Borel

sets of X is the union of all levels of the Borel hierarchy, and B = {B(X) | X ∈ X }
is the family of pointclasses of Borel sets. It is straightforward to check by induction on

α, β < ω1 that using Definition 2.1 one has the following result.

Proposition 2.2. For every X ∈ X and for all α < β < ω1, Σ0
α(X),Π0

α(X) ⊆
∆0
β(X) ⊆ Σ0

β(X),Π0
β(X).

Thus if λ < ω1 is a limit ordinal we have Σ0
<λ = Π0

<λ = ∆0
<λ.

Remark 2.3. Definition 2.1 applies to all the spaces X ∈X , and Proposition 2.2 holds

true in the full generality. Note that Definition 2.1 differs from the classical definition

for Polish spaces (see e.g. (Kechris 1995, Section 11.B)) only for the level 2, and that for

the case of Polish spaces our definition of Borel hierarchy is equivalent to the classical

one. The classical definition cannot be applied in general to non metrizable spaces X

(like e.g. the non discrete ω-algebraic domains) precisely because with that definition the

inclusion Σ0
1(X) ⊆ Σ0

2(X) may fail.

The Borel hierarchy is refined by the difference hierarchies (over the family of point-

classes Σ0
α, α < ω1) introduced by Hausdorff and Kuratowski. Recall that an ordinal α

is called even (respectively, odd) if α = λ + n where λ is either zero or a limit ordinal,

n < ω, and the number n is even (respectively, odd). For an ordinal α, let r(α) = 0 if α

is even and r(α) = 1, otherwise. For any ordinal 1 ≤ α < ω1, consider the operation Dα

sending any sequence 〈Aβ | β < α〉 of subsets of a space X to the subset of X

Dα(〈Aβ | β < α〉) =
⋃{

Aβ \
⋃

γ<β
Aγ | β < α, r(β) 6= r(α)

}
.

Definition 2.4. For any ordinal 1 ≤ α < ω1 and any family of pointclasses Γ, let

Dα(Γ)(X) be the class of all sets of the form Dα(〈Aβ | β < α〉), where the Aβ ’s form an

increasing (with respect to inclusion) sequence of sets in Γ(X), and then set Dα(Γ) =

{Dα(Γ)(X) | X ∈X }.
To simplify the notation, when Γ = Σ0

1 we set Σ−1α (X) = Dα(Σ0
1)(X), Π−1α (X) =

{X \ A | A ∈ Σ−1α (X)}, and ∆−1α (X) = Σ−1α (X) ∩ Π−1α (X) for every 1 ≤ α < ω1.

Finally, we further set Σ−10 (X) = {∅} and Π−10 (X) = {X}.

For example, Σ−14 (X) and Σ−1ω (X) consist of the the sets of the form, respectively,

(A1\A0)∪(A3\A2) and
⋃
i<ω(A2i+1\A2i), where the Ai’s form an increasing sequence of
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open subsets ofX. Notice that the requirement that the sequence of the Aβ ’s be increasing

can be dropped (yielding to an equivalent definition of the pointclass Dα(Γ)(X)) when

Γ(X) is closed under countable unions. This in particular applies to the case when Γ is

the pointclass of open sets or one of the pointclasses Σ0
α. Moreover, it is easy to see that

any level of the difference hierarchy over Σ0
α, α < ω1, is again a family of pointclasses.

2.4. ω-continuous domains

In this section we will briefly review the notation and some (basic) facts concerning ω-

continuous domains which will be used in the following sections. For all undefined notions

and for a more detailed presentation of this topic (as well as for all omitted proofs) we

refer the reader to the standard monograph (Giertz et al. 2003).

Let (X,≤) be an arbitrary poset. The Alexandrov topology on (X,≤) is formed by

taking the upward closed subsets of X as the open sets. The continuous functions between

two spaces endowed with the Alexandrov topology coincide with the monotone (with

respect to their partial orders) functions.

Let (X,≤) be a poset. A set D ⊆ X is directed if any two elements of D have an upper

bound in D. The poset (X,≤) is called a directed-complete partial order (briefly, dcpo)

if any non-empty directed subset of X has a supremum in X. The Scott topology on a

dcpo (X,≤) is formed by taking as open sets all the upward closed sets U ⊆ X such that

D∩U 6= ∅ whenever D is a non-empty directed subset of X whose supremum is in U . As

it is well-known, every dcpo endowed with the Scott topology is automatically a T0 space

(it is enough to observe that if x � y then x ∈ U and y /∈ U for U = {z ∈ X | z � y},
which is clearly Scott open). Note that the order ≤ may be recovered from the Scott

topology because it coincides with its specialization order: x ≤ y if and only if x belongs

to the closure of {y} with respect to the Scott topology. An element c ∈ X is compact

if the set ↑c = {x | c ≤ x} is open, and the set of all compact elements of X is denoted

by X0. Note that for every c ∈ X0, ↑c is the smallest open neighborhood of c, and that

if (X,≤) has a top element, then the closure of every non-empty open set is the entire

space.

A dcpo (X,≤) is an algebraic domain if {↑c | c ∈ X0} is a basis for the Scott topology

of X. An ω-algebraic domain is an algebraic domain X such that X0 is countable. An

important example of an ω-algebraic domain is the space Pω of subsets of ω with the

Scott topology on the directed-complete lattice (P(ω),⊆) (Pω is sometimes called the

Scott domain): in this space, the compact elements are precisely the finite subsets of ω.

Another natural example which will be frequently considered in this paper is (ω≤ω,v),

where ω≤ω = ω∗ ∪ ωω: in this case, the compact elements are exactly the sequences in

ω∗.

For any dcpo (X,≤) and x, y ∈ X, let x � y mean that y ∈ int(↑x) where int is the

interior operator. This relation is transitive and x � y implies x ≤ y. A dcpo (X,≤)

is a continuous domain if for any Scott-open set U and any x ∈ U there is b ∈ U with

b � x. (X,≤) is an ω-continuous domain if there is a countable set B ⊆ X such that

for any Scott-open set U and any x ∈ U there is b ∈ U ∩ B with b � x. Note that any

ω-algebraic domain is an ω-continuous domain because we can take B = X0.
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In the next proposition we characterize scattered dcpo’s with the Scott topology.

Proposition 2.5. Let (X,≤) be a dcpo with the Scott topology. Then X is scattered if

and only if there is no infinite ≤-ascending chain x0 < x1 < . . . in X.

Proof. Let X have no infinite ascending chain, i.e. (X,≥) is well-founded. Consider

the (unique) rank function rk: X → On defined by rk(x) = sup{rk(y) + 1 | x < y} for

each x ∈ X. By induction, X(α) = {x ∈ X | rk(x) ≥ α} for every ordinal α ∈ On, hence⋂
α∈On X

(α) = ∅ and X is scattered.

It remains to show that if X has an infinite ascending chain x0 < x1 < . . . then X is

not scattered. It suffices to check that the supremum x of this chain is in
⋂
α∈On X

(α).

First notice that for every X ′ ⊆ X containing all the xn’s, each xn is not isolated in X ′

because xm ∈ ↑xn ∩X ′ (the smallest open set of X ′ containing xn) for every m ≥ n. In

particular, by induction on α ∈ On one can easily show that xn ∈ X(α) for every n ∈ ω.

We now check by induction that x ∈ X(α) for each α ∈ On. This is obvious when α = 0

or α is a limit ordinal, so assume that α = β + 1. Suppose, for a contradiction, that

x /∈ X(α). Then by the inductive hypothesis x ∈ X(β) \ X(β+1), so {x} is Scott-open

in X(β). Since xn ∈ X(β) for all n < ω, then xn ∈ {x} for some n < ω, which is a

contradiction because necessarily xn 6= x for every n ∈ ω.

Corollary 2.6. In any scattered dcpo, the Scott topology coincides with the Alexandrov

topology. The continuous functions between scattered dcpo’s coincide with the monotone

functions.

For future reference, we recall a characterization of the levels of the difference hierarchy

over open sets in ω-algebraic domains obtained in (Selivanov 2004) (in (Selivanov 2008a)

this was extended to the context of ω-continuous domains). Let (X,≤) be an ω-algebraic

domain. A set A ⊆ X is called approximable if for any x ∈ A there is a compact element

c ≤ x with [c, x] ⊆ A, where [c, x] = {y ∈ X | c ≤ y ≤ x}.
Let (X,≤) be a dcpo endowed with the Scott topology. Given A ⊆ X and n ∈ ω, a

nondecreasing sequence a0 ≤ . . . ≤ an of compact elements of X is said to be alternating

for A if ai ∈ A ⇐⇒ ai+1 /∈ A for every i < n. Notice that in this case we necessarily

have a0 < . . . < an. For this reason, a sequence as above will be also called alternating

chain for A. An alternating tree for A ⊆ X is a monotone function f : (T,v)→ (X0,≤)

such that:

(1) T ⊆ ω∗ is a well-founded tree (i.e. the partial order (T,w) is well-founded), and
(2) f(σ) ∈ A ⇐⇒ f(σn) 6∈ A, for each σn ∈ T (i.e. the image under f of any branch of

T is an alternating chain for A).

The rank of f is the rank of (T,w). An alternating tree f is called 1-alternating (respec-

tively, 0-alternating) if f(∅) ∈ A (respectively, f(∅) 6∈ A).

Theorem 2.7. ((Selivanov 2004, Theorem 2.9) and (Selivanov 2005, Proposition 4.13))

Let X be an ω-algebraic domain, α < ω1, and A ⊆ X. Then A ∈ Σ−1α if and only if A

and X \A are approximable and there is no 1-alternating tree of rank α for A. Moreover,

if α < ω then any set in Σ−1α \Π−1α (resp. in ∆−1α+1 \ (Σ−1α ∪Π−1α )) is Wadge complete

in Σ−1α (resp. in ∆−1α+1).
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2.5. Polish and quasi-Polish spaces

Recall that a space X is Polish if it is countably based and admits a metric d compatible

with its topology such that (X, d) is a complete metric space. Examples of Polish spaces

are the Baire space, the Cantor space, the space of reals R and its Cartesian powers Rn
(n ∈ ω), the closed unit interval [0, 1], the Hilbert cube [0, 1]ω, and the space Rω. It is

well-known that both the Hilbert cube and Rω are universal for Polish spaces (see e.g.

(Kechris 1995, Theorem 4.14)).

A natural variant of Polish spaces has recently emerged, the so-called quasi-Polish

spaces. This class includes all Polish spaces and all ω-continuous domains (the main

objects under consideration in DST and domain theory, respectively), and provides a

unitary approach to their topological analysis. Moreover, it has shown to be a relevant

class of spaces for CA. In the rest of this section we will provide the definition of these

spaces and recall some of their properties that will be used later.

Given a set X, call a function d from X × X to the nonnegative reals quasi-metric

whenever x = y if and only if d(x, y) = d(y, x) = 0, and d(x, y) ≤ d(x, z) + d(z, y) (but

we don’t require d to be symmetric). In particular, every metric is a quasi-metric. Every

quasi-metric on X canonically induce the topology τd on X, where τd is the topology

generated by the open balls Bd(x, ε) = {y ∈ X | d(x, y) < ε} for x ∈ X and 0 6= ε ∈ R+.

A (topological) space X is called quasi-metrizable if there is a quasi-metric on X which

generates its topology. If d is a quasi-metric on X, let d̂ be the metric on X defined by

d̂(x, y) = max{d(x, y), d(y, x)}. A sequence 〈xn | n ∈ ω〉 is called d-Cauchy sequence if

for every 0 6= ε ∈ R+ there is N ∈ ω such that d(xn, xm) < ε for all N ≤ n ≤ m. We

say that the quasi-metric d on X is complete if every d-Cauchy sequence converges with

respect to d̂ (notice that this definition is coherent with the notion of completeness for a

metric d, as in this case d̂ = d).

Definition 2.8. A T0 space X is called quasi-Polish if it is countably based and there is a

complete quasi-metric which generates its topology. When we fix a particular compatible

complete quasi-metric d on X, we say that (X, d) is a quasi-Polish metric space.

Notice that every Polish space is automatically quasi-Polish, but, as recalled above,

also every ω-continuous domain is quasi-Polish by (de Brecht 2011, Corollary 45). For

example, a complete quasi-metric which is compatible with the topology of the Scott

domain Pω is given by d(x, y) = 0 if x ⊆ y and d(x, y) = 2−(n+1) if n is the smallest

element in x\y (for every, x, y ⊆ ω). De Brecht’s paper (de Brecht 2011) shows that there

is a reasonable descriptive set theory for the class of quasi-Polish spaces which extends

the classical theory for Polish spaces in many directions, for example:

Proposition 2.9. (de Brecht 2011, Corollary 23) A subspace of a quasi-Polish space X

is quasi-Polish if and only if it is Π0
2(X).

It is not difficult to see that if (X, d) is a quasi-Polish metric space then (X, d̂) is a

Polish metric space, and that the following holds.

Proposition 2.10. (de Brecht 2011, Corollary 14) For every quasi-Polish metric space

(X, d), τd ⊆ τd̂ ⊆ Σ0
2(X, τd). Hence, in particular, Σ0

<ω(X, τd) = Σ0
<ω(X, τd̂), and the
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identity function idX is continuous from (X, τd̂) to (X, τd) and is Σ0
2-measurable from

(X, τd) to (X, τd̂).

This implies that each quasi-Polish space is in fact a standard Borel space, and hence

that the Souslin’s separation theorem holds in the context of quasi-Polish spaces (de

Brecht 2011, Theorem 58): if X is quasi-Polish then B(X) = ∆1
1(X). Moreover, the

Borel hierarchy on uncountable quasi-Polish spaces does not collapse.

Proposition 2.11. (de Brecht 2011, Theorem 18) If X is a quasi-Polish space, then for

all α < β < ω1, Σ0
α(X),Π0

α(X) ( ∆0
β(X) ( Σ0

β(X),Π0
β(X).

As for universal quasi-Polish spaces, we have the following result:

Proposition 2.12. (de Brecht 2011, Corollary 24) A space is quasi-Polish if and only

if it is homeomorphic to a Π0
2-subset of Pω (with the relative topology inherited from

Pω). In particular, Pω is a universal quasi-Polish space.

A quasi-Polish space need not to be T1. However one can still prove that the complexity

of the singletons is not too high. Recall from e.g. (de Brecht 2011) that a space X satisfies

the TD-axiom if {x} is the intersection of an open and a closed set for every x ∈ X.

Proposition 2.13.

(1) (de Brecht 2011, Proposition 8) If X is a countably based T0-space then {x} ∈ Π0
2(X)

for any x ∈ X.

(2) (de Brecht 2011, Theorem 65) A countably based space is scattered if and only if it

is a countable quasi-Polish space satisfying the TD-axiom.

(3) (Folklore) If (X,≤) is a dcpo endowed with the Scott topology, then {c} is the inter-

section of an open set and a closed set for every compact element c ∈ X0.

Of course, a quasi-Polish space need not to have any other special topological property:

for example, all nondiscrete ω-continuous domain are not Hausdorff and not regular. As

for metrizability, we have the following result:

Proposition 2.14. (de Brecht 2011, Corollary 42) A metrizable space is quasi-Polish if

and only if it is Polish.

Finally, among the various characterizations of the class of quasi-Polish spaces pre-

sented in (de Brecht 2011), the following one will be of interest for the results of this

paper.

Proposition 2.15. (de Brecht 2011, Theorem 53) A topological space X is a quasi-

Polish space if and only if it is homeomorphic to the set of non-compact elements of

some ω-algebraic domain.

2.6. Reducibilities

In this subsection we introduce and briefly discuss some notions of reducibility which

serve as tools for measuring the topological complexity of problems (e.g. sets, partitions,

and so on) in DST and CA.
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Definition 2.16. Let X ∈ X be a topological space. A collection of functions F from

X to itself is called reducibility (on X) if it contains the identity function idX and is

closed under composition.

Given a reducibility F on X, one can consider the preorder ≤XF on P(X) associated

to F obtained by setting for A,B ⊆ X

A ≤XF B ⇐⇒ A = f−1(B) for some f ∈ F .

The preorder ≤XF canonically induces the equivalence relation

A ≡XF B ⇐⇒ A ≤XF B ∧B ≤XF A.

Given A ⊆ X, the set [A]XF = {B ⊆ X | A ≡XF B} is called the F-degree of A (in

X). We denote the set of F-degrees by DXF . Notice that ≤XF canonically induces on

DXF the partial order [A]XF ≤ [B]XF ⇐⇒ A ≤XF B. The structures (P(X),≤XF ) or its

≡XF -quotient (DXF ,≤) are both called F-hierarchy (on X) or hierarchy of the F-degrees.

When the space X is clear from the context, we drop the superscript referring to X

in all the notation above. Notice that if F is the collection of all continuous functions,

then ≤F coincides with the Wadge reducibility ≤W. We will also sometimes consider

the restriction of the F-hierarchy to some suitable pointclass Γ(X): in this case, the

structure (Γ(X),≤F ) and its ≡F -quotient (whenever it is well-defined) will be called

(Γ,F)-hierarchy.

An interesting variant of the reducibility between subsets of X considered above is

obtained by considering X-namings instead of subsets of X.

Definition 2.17. Let X be a topological space. An X-naming is a function ν with

domain X.

There are several natural reducibility notions for namings, the most basic of which is

the following generalization of ≤W.

Definition 2.18. (Selivanov 2005; Selivanov 2011) An X-naming µ is Wadge reducible

to an X-naming ν (in symbols µ ≤W ν) if µ = ν ◦ f for some continuous function

f : X → X.

An X-naming µ is Wadge equivalent to ν (in symbols µ ≡W ν), if µ ≤W ν and ν ≤W µ.

For any set S, one can then consider the preorder (SX ,≤W) (or its ≡W-quotient struc-

ture). This gives a generalization of the preorder formed by the classical Wadge reducibil-

ity on subsets of X, because if S = {0, 1} then the structures (P(X),≤W) and (SX ,≤W)

are isomorphic: A ≤W B if and only if cA ≤W cB , where cA : X → 2 is the character-

istic function of the set A ⊆ X. Passing to an arbitrary set S, the Wadge reducibility

between X-namings on S corresponds to the continuous reducibility between partitions

of X in (at most) |S|-many pieces. For this reason, when S = κ is a cardinal number the

elements of κX are also called κ-partitions of X. Moreover, as for the Wadge reducibility

between subsets of X, we can consider the restriction of (SX ,≤W) to a pointclass Γ(X).

In particular, when S = k (for some k ∈ ω) we denote by (Γ(X))k the set of k-partitions

ν ∈ kX such that ν−1(i) ∈ Γ(X) for every i < k.
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Already for 3 ≤ k ∈ ω, the structure (kN ,≤W) becomes much more complicated than

the structure of Wadge degrees on N , but when restricted to suitable pointclasses it

is quite well understood. In (van Engelen et al. 1987) it is shown that the structure

((∆1
1(N ))k,≤W) is a wqo, i.e. it has neither infinite descending chain nor infinite an-

tichain. In (Hertling 1993; Selivanov 2007) the ≡W-quotient structures of, respectively,

((BC(Σ0
1)(N ))k,≤W) and ((∆0

2(N ))k,≤W) were characterized in terms of the relation

of homomorphism between finite and, respectively, countable well-founded k-labeled

forests. The mentioned characterizations considerably clarify the corresponding struc-

tures ((BC(Σ0
1)(N ))k,≤W) and ((∆0

2(N ))k,≤W), and led to deep definability theories

for them developed in (Kudinov and Selivanov 2007; Kudinov and Selivanov 2009; Kudi-

nov et al. 2009). In particular, both structures have undecidable first-order theories, and

their automorphism groups are isomorphic to the symmetic group on k. Similar results

are also known for k-partitions of ω≤ω, see (Selivanov 2010).

Of course one can consider other variants on the notion of continuous reducibility

between X-namings. For example, given a reducibility F on X and a set S, one can

consider the F-reducibility ≤S,XF between X-namings defined in the obvious way (as

usual, when S and/or X are clear from the context we will drop any reference to them in

the notation): in this paper we will also provide some results related to this more general

notion of reducibility.

3. Some examples of reducibilities

There are various notions of reducibility F that have been considered in the literature

(see e.g. (Andretta 2006; Andretta and Martin 2003; Motto Ros 2009; Motto Ros 2010a;

Motto Ros 2010b)). In this section we will provide several examples which are relevant

for this paper.

Let Γ,∆ be two families of pointclasses and X,Y be arbitrary topological spaces. We

denote by Γ∆(X,Y ) (respectively, Γ∆[X,Y ]) the collection of functions f : X → Y such

that f−1(A) ∈ Γ(X) for all A ∈ ∆(Y ) (respectively, f(A) ∈ ∆(Y ) for all A ∈ Γ(X)).

Notice that if f : X → Y is an injection then f ∈ Γ∆(X,Y ) ⇐⇒ f−1 ∈ ∆Γ[f(X), X].

If moreover f : X → Y is such that f(X) ∈∆ and ∆ is closed under finite intersections,

then f ∈ Γ∆[X,Y ] ⇐⇒ f−1 ∈ ∆Γ(f(X), X). We abbreviate ΓΓ(X,Y ) with Γ(X,Y )

and ΓΓ[X,Y ] with Γ[X,Y ]. When writing Γ ⊆ Γ′ we mean that Γ(X) ⊆ Γ′(X) for all

topological spaces X.

Remark 3.1. Let Γ,Γ′,∆,∆′,Λ be families of pointclasses and X,Y, Z be arbitrary

topological spaces.

(1) If Γ ⊆ Γ′ and ∆ ⊆∆′ then Γ∆′(X,Y ) ⊆ Γ′∆(X,Y ) and Γ′∆[X,Y ] ⊆ Γ∆′[X,Y ].

(2) If f ∈ ΓΛ(X,Y ) and g ∈ Λ∆(Y,Z) then g ◦ f ∈ Γ∆(X,Z).

(3) If f ∈ ΓΛ[X,Y ] and g ∈ Λ∆[Y,Z] then g ◦ f ∈ Γ∆[X,Z].

(4) Γ(X,X) is closed under composition and contains the identity function (hence is a

reducibility on X).

In this paper, we will often consider the sets of functions given by using the levels of the

Borel hierarchy in the above definitions. For ease of notation, when Γ = Σ0
α and ∆ = Σ0

β
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(for α, β < ω1) we will write Σ0
α,β(X,Y ) and Σ0

α,β [X,Y ] instead of Σ0
αΣ0

β(X,Y ) and

Σ0
αΣ0

β [X,Y ], respectively. Similarly, we will write Σ0
<α,β(X,Y ) instead of Σ0

<αΣ0
β(X,Y ).

Moreover, we will often denote the class of continuous functions Σ0
1(X,Y ) by W(X,Y ),

and write W(X) (or even just W, if X is clear from the context) instead of W(X,X).

(The symbol W stands for W. Wadge, who was the first to initiate in (Wadge 1984) a

systematic study of the quasi-order ≤W on N .)

Some of these classes of functions are well-known in DST. For example, Σ0
α(X,Y )

coincides (for α ≥ 1 and X = Y = N ) with the class of functions Dα considered in (Motto

Ros 2009): for this reason, the class Σ0
α(X,Y ) will be often denoted by Dα(X,Y ). When

X = Y we will simplify a little bit the notation by setting Dα(X) = Dα(X,X), and

even drop the reference to X when such space is clear from the context. Notice that

the classes Dα(X) are always reducibilities by Remark 3.1(4). It follows immediately

from the above definitions that Dα(X,Y ) = Π0
α(X,Y ) for 1 ≤ α < ω1, and that if

α ≥ 2 then Dα(X,Y ) = ∆0
α(X,Y ); when Y is zero-dimensional, then we also have that

D1(X,Y ) = ∆0
1(X,Y ).

Another well-known class is Σ0
α,1(X,Y ), the collection of all Σ0

α-measurable functions

from X to Y . Recall that by (Kechris 1995, Theorem 24.3) if α = β + 1 and X,Y are

metrizable with Y separable, the class Σ0
α,1 coincides with the class of Baire class β

functions (as defined e.g. in (Kechris 1995, Definition 24.1)). The classes Σ0
α,1(X,X) are

not closed under composition if α > 1: as computed in (Motto Ros 2010a, Theorem 6.4),

the closure under composition of Σ0
α,1(X,X) is given by Bγ(X) =

⋃
β<γ Σ0

β,1(X,X),

where γ = α · ω is the first additively closed ordinal above α (as usual, we will drop the

reference to X whenever such space will be clear from the context). Hence, when γ is

additively closed the set Bγ(X) is a reducibility on X. The reducibilities Bγ(X) and their

induced degree-structures have been studied in (Motto Ros 2010a). Notice also that in

general
⋃
α<γ Dα(X) ( Bγ(X) ( Σ0

<γ,1(X,X)

We now state some properties of these classes of functions.

Proposition 3.2.

(1) If 1 ≤ α < β < ω1 then Dα(X,Y ) ⊆ Dβ(X,Y ), and if β is limit Dα(X,Y ) ⊆
Σ0
<β(X,Y ) ⊆ Dβ(X,Y ).

(2) Let 1 ≤ α, β < ω1 and δ = max{α, β} · ω (i.e. δ is the first additively closed

ordinal strictly above α and β). Then Σ0
α,β(X,Y ) ⊆ Σ0

<δ(X,Y ). In particular,⋃
α<γ Σ0

α,1(X,Y ) ⊆ Σ0
<γ(X,Y ) ⊆ Dγ(X,Y ) for every additively closed γ < ω1.

Proof. The proof of (1) is straightforward, so we just consider (2). If α ≤ β then

Σ0
α,β(X,Y ) ⊆ Σ0

β(X,Y ) ⊆ Σ0
<δ(X,Y ) by (1), hence we can assume β < α. Arguing by

induction on γ < ω1, one easily obtains Σ0
α,β(X,Y ) ⊆ Σ0

α+γ,β+γ(X,Y ). Let α′ ≤ α be

such that β + α′ = α, and let γ = α + (α′ · ω) = β + (α′ · ω) ≤ α · ω = δ. We claim

that Σ0
α,β ⊆ Σ0

<γ(X,Y ), which obviously implies the desired result. Let f ∈ Σ0
α,β(X,Y )

and A ∈ Σ0
<γ(Y ). Then for some k < ω we have A ∈ Σ0

β+(α′·k)(Y ), hence f−1(A) ∈
Σ0
α+(α′·k)(X) ⊆ Σ0

<γ(X), as required.

In particular, by Proposition 3.2(2) all Baire class 1 functions (i.e. the functions in

Σ0
2,1(X,Y )) are in Σ0

<ω(X,Y ), and hence also in Dω(X,Y ).
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Other kind of reducibilities which will be considered in this paper are given by classes

of piecewise defined functions. Given a family of pointclasses Γ, a Γ-partition of a space

X is a sequence 〈Dn | n ∈ ω〉 of pairwise disjoint sets from Γ(X) such that X =
⋃
n∈ωDn.

Notice that, in particular, every Σ0
α-partition of X is automatically a ∆0

α-partition of X

(for every α < ω1).

Definition 3.3. (Motto Ros 2011) Given two spaces X,Y ∈X , a collection of functions

F from (subsets of) X to Y , and an ordinal α < ω1, we will denote by DFα (X,Y ) § the

collection of those f : X → Y for which there is a Σ0
α-partition (equivalently, a ∆0

α-

partition) 〈Dn | n ∈ ω〉 of X and a sequence 〈fn : Dn → Y | n ∈ ω〉 of functions from F
such that f =

⋃
n∈ω fn.

In particular, we will be interested in the classes DW
α (X,Y ) = D

W(⊆X,Y )
α (X,Y ), where

W(⊆ X,Y ) =
⋃
X′⊆X W(X ′, Y ), for various α < ω1. Notice also that Σ0

α(X,Y ) =

D
Σ0
α(⊆X,Y )

α (X,Y ) with Σ0
α(⊆ X,Y ) =

⋃
X′⊆X Σ0

α(X ′, Y ), and that DW
α (X,Y ) ⊆ Dα(X,Y ).

As for the other classes of functions, we will write DW
α (X) instead of DW

α (X,X), and even

drop the reference to X when there is no danger of confusion. It is not hard to check

that each of the DW
α (X) is a reducibility on X.

It is a remarkable theorem of Jayne and Rogers (Jayne and Rogers 1982, Theorem 5)

(but see also (Motto Ros and Semmes 2010; Kačena et al. 2012) for a shorter and simpler

proof) that if X,Y are Polish spaces¶ then D2(X,Y ) = DW
2 (X,Y ). This result has been

recently extended to the level 3 (for the special case X = Y = N ) by B. Semmes.

Theorem 3.4. (Semmes 2009) D3(N ) = DW
3 (N ).

Whether this result can be extended to all 3 < n < ω is a major open problem,

but notice however that, as observed e.g. in (Andretta 2007; Motto Ros 2009), it is not

possible to generalize the Jayne-Rogers theorem to levels α ≥ ω. To see this we need

to recall the definition of containment between functions introduced in (Solecki 1998),

and the definition of a very special function, called the Pawlikowski function. We call

embedding any function between two topological spaces which is an homeomorphism on

its range.

Definition 3.5. (Solecki 1998) Let X0, X1, Y0, Y1 ∈ X be topological spaces and con-

sider f : X0 → Y0 and g : X1 → Y1. We say that f is contained in g, and we write

f v g, just in case there are two embeddings ϕ : X0 → X1 and ψ : f(X0)→ Y1 such that

ψ ◦ f = g ◦ ϕ.

It is not hard to check that if f and g are as in Definition 3.5 and f v g, then

g ∈ Σ0
α,β(X1, Y1) implies f ∈ Σ0

α,β(X0, Y0) for every 1 ≤ α, β < ω1.

§ Notice that for X = Y = N , this class of functions was denoted by D̃F
α in (Motto Ros 2011). However,

here we will not use the other class of piecewise defined functions considered in that paper, so we can
safely simplify the notation dropping the decoration on the symbol D.

¶ In fact the Jayne-Rogers result is even more general, in that its conclusion holds also when X,Y are

arbitrary metric spaces with X an absolute Souslin-F set.
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Let us endow the space (ω+ 1)ω with the product of the order topology on ω+ 1. The

Pawlikowski function is the function P : (ω + 1)ω → N defined by

P (x)(n) =

{
x(n) + 1 if x(n) ∈ ω
0 if x(n) = ω.

Since (ω + 1)ω is a perfect nonempty compact metrizable zero-dimensional space, it is

homeomorphic to the Cantor space C by Brouwer’s theorem (Kechris 1995, Theorem 7.4):

therefore, using the fact that N is homeomorphic to a Gδ subset of C, P can actually be

regarded as a function from C to C .

Definition 3.6. Let X,Y be arbitrary Polish spaces. We say that a function f : X → Y

can be decomposed into countably many continuous functions (briefly, it is decomposable)

if there is some partition 〈Dn | n ∈ ω〉 of X into countably many pieces (of arbitrary

complexity) such that f � Dn is continuous for every n < ω.

Notice in particular that all the functions in
⋃
α<ω1

DW
α (X,Y ) are decomposable by defi-

nition, and that if f v g and g is decomposable, then f is decomposable as well. The func-

tion P was introduced as an example of a Baire class 1 function (hence P ∈ Σ0
2,1(C, C))

which is not decomposable — see e.g. (Solecki 1998). Using this fact, we can now prove

that the Jayne-Rogers theorem cannot be generalized to the infinite levels of the Borel

hierarchy for several uncountable quasi-Polish spaces.

Proposition 3.7. Assume that X,Y are uncountable quasi-Polish spaces and ω ≤ α <
ω1. If C can be embedded into Y , then DW

α (X,Y ) ( Dα(X,Y ). In particular, DW
α (X,Y ) (

Dα(X,Y ) for Y a Polish space, Y = ω≤ω, or Y = Pω.

Proof. First observe that P ∈ Σ0
<ω(C, C) ⊆ Dα(C) by Proposition 3.2, but P /∈⋃

α<ω1
DW
α (C) because P is not even decomposable. Suppose now that X,Y are arbi-

trary uncountable quasi-Polish spaces, and further assume that C embeds into Y .

Claim 3.7.1. Let Z be an uncountable quasi-Polish space. Then there is a continuous

injection of C onto a Π0
2 subset of Z.

Proof of the Claim. Let d be a complete quasi-metric on Z compatible with its topol-

ogy. By the Cantor-Bendixon theorem (Kechris 1995, Theorem 6.4), there is an embed-

ding ϕ : C → (Z, τd̂). Notice that the range of ϕ is automatically τd̂-closed. Therefore by

Proposition 2.10 we have that ϕ : C → (Z, τd) is continuous as well, and that its range is

a Π0
2 set with respect to τd.

Let ϕ : C → X be a continuous injection with ϕ(C) ∈ Π0
2(X), and let ψ : C → Y be

an embedding. Pick an arbitrary y0 ∈ Y and define P ′ : X → Y by setting P ′(x) =

ψ(P (ϕ−1(x))) if x ∈ ϕ(C) and P ′(x) = y0 otherwise. It is straightforward to check that

P ′ ∈ Σ0
3,1(X,Y ) ⊆ Σ0

<ω(X,Y ) ⊆ Dα(X,Y ) by Proposition 3.2. We will now show that

P ′ : X → Y is not decomposable, which clearly implies that P ′ /∈ DW
α (X,Y ), as required.

Assume towards a contradiction that P ′ is decomposable, and let 〈Xn | n ∈ ω〉 be a

countable partition of X such that P ′n = P ′ � Xn is continuous for every n ∈ ω. Then

〈ϕ−1(Xn) | n ∈ ω〉 is a countable partition of C: we will show that for every n ∈ ω
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the function Pn = P � ϕ−1(Xn) is continuous, contradicting the fact that P is not

decomposable. Let U ⊆ C be open. Since ψ is an embedding, there is an open V ⊆ Y

such that ψ(U) = V ∩ ψ(C). By definition of P ′, P−1n (U) = ϕ−1((P ′n)−1(V )), which is

open in ϕ−1(Xn) because ϕ and P ′n are both continuous: therefore Pn is continuous.

Corollary 3.8. Assume that X,Y are uncountable quasi-Polish spaces and ω ≤ α < ω1.

If Y is Hausdorff, then DW
α (X,Y ) ( Dα(X,Y ).

Proof. It is enough to show that if Y is an uncountable Hausdorff quasi-Polish space

then there is an embedding of C into Y . Let ϕ : C → Y be a continuous injection (which

exists by Claim 3.7.1). We want to show that for every open U ⊆ C, ϕ(U) is open in ϕ(C).
Since C is compact, C \ U is compact as well. Since ϕ is continuous, then D = ϕ(C \ U)

is compact as well, and hence also closed in Y . But then ϕ(U) = (Y \ D) ∩ ϕ(C) is an

open set with respect to the relative topology of ϕ(C), as required.

The Pawlikowski function P can in fact be used to characterize decomposable functions

within certain Borel classes. In (Solecki 1998), Solecki proved that if f ∈ Σ0
2,1(X,Y ) with

X,Y Polish spaces‖, then f is decomposable if and only if P 6v f . Using the technique

of changes of topologies and arguing by induction on n < ω, this characterization can

easily be extended†† to the wider context of functions in
⋃

1≤n<ω Σ0
n,1(X,Y ).

Theorem 3.9. (Motto Ros 2012, Lemma 5.7) Let X,Y be Polish spaces and let f be in

Σ0
n,1(X,Y ) for some 1 ≤ n < ω. Then f is decomposable if and only if P 6v f .

Finally, we recall from (Motto Ros 2010a, Proposition 6.6) the following result on the

topological complexity of P .

Proposition 3.10. For every n ∈ ω, P /∈ Dn(C).

Combining all above results together, we have the following proposition (see also

Lemma 5.8 in (Motto Ros 2012)).

Proposition 3.11. Let X,Y be Polish spaces. For every n < ω and f ∈ Dn(X,Y ), f is

decomposable.

Proof. By Proposition 3.10 and the observation following Definition 3.5, we have that

P 6v f , hence f is decomposable by Theorem 3.9.

4. Isomorphisms of minimal complexity between quasi-Polish spaces

The following definition extends in various directions the topological notion of homeo-

morphism.

‖ Solecki’s theorem applies to a slightly wider context, i.e. to the case when X is an analytic space and

Y is separable metric.
†† In (Pawlikowski and Sabok 2012, Theorem 1.1), Solecki’s characterization of decomposable functions

is further extended (using different and more involved methods) to the even wider context of all Borel
functions from an analytic space X to a separable metrizable space Y , but here we will not need the

above characterization in such generality.
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Definition 4.1.

(1) Let F be a collection of functions between topological spaces, and X,Y ∈ X . We

say that X and Y are F-isomorphic (X 'F Y in symbols) if there is a bijection

f : X → Y such that both f and f−1 belong to F .

(2) If Γ is a family of pointclasses, we say that two topological spaces X,Y are Γ-

isomorphic (X 'Γ Y in symbols) if X 'F Y where F =
⋃
{Γ(X,Y ) | X,Y ∈ X }.

This is obviously equivalent to requiring that X 'G Y where G =
⋃
{Γ[X,Y ] | X,Y ∈

X }.
(3) We say that X,Y ∈ X are piecewise homeomorphic (X 'pw Y in symbols) if there

are countable partitions 〈Xn | n ∈ ω〉, 〈Yn | n ∈ ω〉 of, respectively, X and Y such

that Xn and Yn are homeomorphic for every n ∈ ω.

(4) Given a family of pointclasses Γ, we say that X and Y are Γ-piecewise homeomorphic

(X 'pw(Γ) Y in symbols) if and only if there are partitions 〈Xn | n ∈ ω〉, 〈Yn |
n ∈ ω〉 of, respectively, X and Y consisting of sets in Γ such that Xn and Yn are

homeomorphic for every n ∈ ω.

It is obvious that if F ⊆ G are two sets of functions between topological spaces and

X,Y ∈ X are such that X 'F Y then X 'G Y . Since the notion of Σ0
α-isomorphism,

Π0
α-isomorphism, and ∆0

α-isomorphism all coincide for 2 ≤ α < ω1, for simplicity of

notation we will write X 'α Y instead of X 'Σ0
α
Y . Similarly, when F =

⋃
{DW

α (X,Y ) |
X,Y ∈X } we will simply write X 'W

α Y instead of X 'F Y .

Lemma 4.2. Let 1 ≤ α < ω1 and X,Y ∈X . Then X 'W
α Y if and only if X 'pw(Σ0

α)
Y

(equivalently, if and only if X 'pw(∆0
α)
Y ).

Similarly, let F be the class of all decomposable functions. Then X 'F Y if and only

if X 'pw Y .

Proof. We just consider the first part of the lemma, as the second one can be proved

in a similar way. The direction from right to left directly follows from the definition of

DW
α (X,Y ), so let us assume that f : X → Y is a bijection such that f ∈ DW

α (X,Y ) and

f−1 ∈ DW
α (Y,X). By definition, there are partitions 〈X ′n | n ∈ ω〉 and 〈Y ′m | m ∈ ω〉 of,

respectively, X and Y in Σ0
α pieces such that f � X ′n and f−1 � Y ′m are continuous for

every n,m ≤ ω. This implies that for every n,m < ω the sets X〈n,m〉 = X ′n ∩ f−1(Y ′m)

and Y〈m,n〉 = Y ′m ∩ f(X ′n) (where 〈·, ·〉 denotes a bijection between ω × ω and ω) are in

Σ0
α as well and form two countable partitions of, respectively X and Y . Then it is easy

to see that f � X〈n,m〉 : X〈n,m〉 → Y〈m,n〉 is a bijection witnessing that X〈n,m〉 and Y〈m,n〉
are homeomorphic, hence we are done.

It is a classical result of DST that every two uncountable Polish spaces X,Y are B-

isomorphic (see e.g. (Kechris 1995, Theorem 15.6)). The next proposition extends this

result to the context of uncountable quasi-Polish spaces and computes an upper bound

for the complexity of the Borel-isomorphism according to Definition 4.1.

Proposition 4.3. Let F =
⋃
{Σ0

3,1(X,Y ) | X,Y ∈X } and let X,Y be two uncountable

quasi-Polish spaces. Then X ∼=F Y . In particular, X ∼=∆0
<ω

Y and hence also X ∼=ω Y .
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Proof. Let dX and dY be complete quasi-metrics compatible with the topologies of, re-

spectively,X and Y , and let d̂X , d̂Y be the metrics induced by dX and dY . Then by Propo-

sition 2.10 idX : (Xτd̂X )→ (X, τdX ) is a continuous function with Σ0
2-measurable inverse,

and similarly for idY : (Y, τd̂Y ) → (Y, τdY ). Since (X, τd̂X ) and (Y, τd̂Y ) are uncountable

Polish spaces, by e.g. (Kuratowski 1934, p. 212) there is a bijection g : (X, τd̂X )→ (Y, τd̂Y )

such that both g and g−1 are Σ0
2-measurable. Hence f = idY ◦g ◦ id−1X is a bijection be-

tween (X, τdX ) and (Y, τdY ) such that both f and f−1 are Σ0
3-measurable.

The second part of the Proposition follows from Proposition 3.2(2).

Proposition 4.4. Every quasi-Polish space is DW
4 -isomorphic to an ω-algebraic domain.

Proof. Let Y be a quasi-Polish space. We can clearly assume that Y is infinite (oth-

erwise Y itself is an ω-algebraic domain). By Proposition 2.15, there is an ω-algebraic

domain X and a function f : Y → X such that f is an homeomorphism between Y and

X\X0, where X0 is the (countable) set of compact elements of X (see Subsection 2.4). By

Lemma 4.2, it is enough to show that Y ∼=pw(∆0
4)
X. Let 〈xn | n ∈ ω〉 be an enumeration

without repetitions of X0 and 〈yn | n ∈ ω〉 be an enumeration without repetitions of an

infinite countable subset Y0 of Y such that Y \Y0 is non-empty. Then 〈Y \Y0, {yn} | n ∈ ω〉
and 〈X \ (X0 ∪ f(Y0)), {f(yn)}, {xn} | n ∈ ω〉 are countable partitions of, respectively, Y

and X into Π0
3 pieces by Proposition 2.13(1). The function f � (Y \Y0) is an homeomor-

phism between Y \ Y0 and X \ (X0 ∪ f(Y0)). For every n ∈ ω, the function sending y2n
to f(yn) is an homeomorphism between {y2n} and {f(yn)}, while the function sending

y2n+1 to xn is an homeomorphism between {y2n+1} and {xn}. Hence Y ∼=pw(∆0
4)
X, as

required.

Proposition 4.5.

(1) Let X,Y be countable countably based T0-spaces. Then X 'W
3 Y if and only if

|X| = |Y |.
(2) Let X,Y be countable T1 spaces. Then X 'W

2 Y if and only if |X| = |Y |.
(3) Let X,Y be scattered countably based spaces. Then X 'W

2 Y if and only if |X| = |Y |.
In particular, X 'W

3 Y (respectively, X 'W
2 Y ) for X,Y countable quasi-Polish (re-

spectively, Polish) spaces of the same cardinality.

Proof. (1) For the nontrivial direction, notice that by Proposition 2.13(1) any bijection

f : X → Y is a witness of X 'W
3 Y .

(2) It is a classical fact that a space is T1 if and only if its singletons are closed: hence

any bijection between X and Y witnesses X 'W
2 Y .

(3) By Proposition 2.13(2), {x} is the intersection of an open set and a closed set

for every x ∈ X, and similarly for every y ∈ Y : hence any bijection between X and Y

witnesses X 'W
2 Y .

Of course the general results above (Propositions 4.3,4.4 and 4.5) do not give in gen-

eral an optimal bound (in the sense of Definition 4.1) on the minimal complexity of an

isomorphism between two specific quasi-Polish spaces X and Y . In the next proposition

we collect some easy observations concerning the possible complexity of isomorphism

between concrete examples of quasi-Polish spaces, including the following:
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(1) ω endowed with the discrete topology;

(2) the space Rn (n ∈ ω) endowed with the product of the order topology on R;

(3) the ω-algebraic domain (ω≤ω,v) endowed with the Scott topology.

Remark 4.6. It is straightforward to check that if f ∈ DW
2 (X,Y ) with X σ-compact

and Y an Hausdorff space, then the range of f is σ-compact as well. In particular, if

X,Y are Polish spaces with X σ-compact and Y non σ-compact, then there is no onto

f ∈ DW
2 (X,Y ).

Proposition 4.7.

(1) N 'W
2 ω tN ;

(2) if X is a σ-compact quasi-Polish space then N 6'W
2 X. In particular, N 6'W

2 C,
N 6'W

2 Rn for every n < ω, and N 6'W
2 ω≤ω;

(3) N 'W
3 C. More precisely, there is a bijection f : N → C such that f ∈ DW

2 (N , C) and

f−1 ∈ DW
3 (C,N );

(4) N 'W
3 Rn for every 1 ≤ n < ω. More precisely, there is a bijection f : N → Rn such

that f ∈ DW
2 (N ,Rn) and f−1 ∈ DW

3 (Rn,N );

(5) N 'W
3 ω≤ω. More precisely, there is a bijection f : N → ω≤ω such that f ∈ DW

2 (N , ω≤ω)

and f−1 ∈ DW
3 (ω≤ω,N ).

Proof. (1) The space X = N \ {n0ω | n ∈ ω} is a nonempty perfect zero-dimensional

Polish space whose compact subsets all have empty interior, hence it is homeomorphic to

N by the Alexandrov-Urysohn theorem (Kechris 1995, Theorem 7.7). Let f̂ : X → N be

a witness of this fact, and extend f̂ to a bijection f : N → ω tN by setting f(n0ω) = n

for every n ∈ ω. Since X is open in N and each {n0ω} is closed in N , the partition

〈X, {n0ω} | n ∈ ω〉 of N witnesses that f ∈ DW
2 (N , ω t N ). Conversely, the partition

〈N , {n} | n ∈ ω〉 is a clopen partition of ω tN witnessing f−1 ∈ DW
2 (ω tN ,N ).

(2) Since N is not σ-compact, the claim follows from Remark 4.6.

(3) By part (1), it is enough to prove the claim with N replaced by ω t N . Let

f̂ : N → C be the well-known homeomorphism between N and Y = {y ∈ C | ∀n∃m ≥
n (y(m) = 1)} given by f̂(x) = 0x(0)10x(1)10x(2)10x(3) . . . Since C \ Y is countable, we

can fix an enumeration 〈yn | n ∈ ω〉 without repetitions of such a set. Extend f̂ to a

bijection f : ω t N → C by setting f(n) = yn for every n ∈ ω. Since each point of the

spaces ω tN and C is closed, N is (cl)open in ω tN , and Y is a (proper) Π0
2(C) set, we

have that 〈N , {n} | n ∈ ω〉 is a clopen partition of ω t N witnessing f ∈ DW
2 (ω t N , C),

and 〈Y, {yn} | n ∈ ω〉 is a Π0
2-partition of C witnessing f−1 ∈ DW

3 (C, ω tN ).

(4) Let first n = 1. By part (1), it is enough to prove the claim with N replaced by

ω t N . Let 〈qk | k ∈ ω〉 be an enumeration without repetition of the set of rational

numbers Q. It is well-known that N and R \Q are homeomorphic, so let f̂ be a witness

of this fact. Extend f̂ to a bijection f : ω tN → R by setting f(k) = qk for every k ∈ ω.

Since R\Q is a (proper) Π0
2(R) set and each singleton of R (and hence of Q) is closed, we

have that 〈N , {n} | n ∈ ω〉 is a clopen partition of ω tN witnessing f ∈ DW
2 (ω tN ,R),

and 〈R \Q, {qn} | n ∈ ω〉 is a Π0
2-partition of C witnessing f−1 ∈ DW

3 (R, ω tN ).

Now assume n > 1. First observe that Z =
⋃

0<i<n([n]i×Qi×N ) (where each [n]i×Qi
is endowed with the discrete topology) is homeomorphic to N , hence by part (1) and the
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fact that N tN is homeomorphic to N it is enough to prove the claim with N replaced

by ω t N t Z. For each 0 < i < n, a = {a0, . . . , ai−1} ∈ [n]i and s ∈ Qi, let fa,s be an

homeomorphism between N and

Ra,s = {x ∈ Rn | ∀j < i (x(aj) = s(j)) ∧ ∀k /∈ a (x(k) ∈ R \Q)}

(such an homeomorphism exists because Ra,s is homeomorphic to (R \Q)n−i). Let also

f̂ be an homeomorphism between N and (R \ Q)n, and 〈tk | k ∈ ω〉 be an enumeration

without repetitions of Qn. Then define

f : ω tN t Z → Rn

by setting f(k) = tk, f(x) = f̂(x), and f(a, s, x) = fa,s(x) for every k ∈ ω, x ∈ N and

(a, s) ∈
⋃

0<i<n([n]i×Qi). It is easy to check that f is in fact a bijection. Moreover, since

all the Ra,s and (R \Q)n are Π0
2(Rn) sets and all points are closed in Rn, we have that

〈N , {k}, {(a, s, x) | x ∈ N} | k ∈ ω, (a, s) ∈
⋃

0<i<n

([n]i ×Qi)〉

is a clopen partition of ω tN t Z witnessing f ∈ DW
2 (ω tN t Z,Rn), and

〈Qn, (R \Q)n,Ra,s | (a, s) ∈
⋃

0<i<n

([n]i ×Qi)〉

is a Π0
2-partition of Rn witnessing f−1 ∈ DW

3 (Rn, ω tN t Z).

(5) By part (1), it is again enough to prove the claim with N replaced by ω tN . Let

〈σn | n ∈ ω〉 be an enumeration without repetition of ω∗. Define f : ω t N → ω≤ω by

setting f(n) = σn and f(x) = x for all n ∈ ω and x ∈ N . Since all the σ ∈ ω∗ are

compact elements of ω≤ω, their singletons are ∆0
2(ω≤ω) subsets by Proposition 2.13(3),

hence N is a Π0
2(ω≤ω) set. Therefore, 〈N , {n} | n ∈ ω〉 is a clopen partition of ω t N

witnessing f ∈ DW
2 (ω t N , ω≤ω), while 〈N , {σ} | σ ∈ ω∗〉 is a Π0

2-partition of ω≤ω

witnessing f−1 ∈ DW
3 (ω≤ω, ω tN ).

A natural way to compute the complexity of an isomorphism between two topological

spaces is given by the following variant of the usual Schröder-Bernstein argument (see

also (Jayne and Rogers 1979b)).

Lemma 4.8. Let 1 ≤ α < ω1, X,Y ∈ X , and F be a collection of functions between

topological spaces closed under restrictions (i.e. f � X ′ ∈ F for every f : X → Y ∈ F
and X ′ ⊆ X). If X is F-isomorphic to a subset of Y via some f ∈ Π0

α[X,Y ] and Y is

F-isomorphic to a subset of X via some g ∈ Π0
α[Y,X], then there are X ′ ∈ ∆0

α+1(X)

and Y ′ ∈∆0
α+1(Y ) such that X ′ 'F Y ′ and X \X ′ 'F Y \ Y ′.

In particular, if X (respectively, Y ) is homeomorphic to a Π0
α subset of Y (respectively,

X), then X 'W
α+1 Y .

Proof. Inductively define Xn ⊆ X and Yn ⊆ Y , n ∈ ω, by setting X0 = X, Y0 = Y ,

Xn+1 = g(Yn), Yn+1 = f(Xn). Let also X∞ =
⋂
n∈ωXn and Y∞ =

⋂
n∈ω Yn. By our

assumption on f and g, all of Xn, Yn, X∞, Y∞ are in Π0
α. Let X ′ = X∞ ∪

⋃
n∈ω(X2n \

X2n+1) and Y ′ = Y∞ ∪
⋃
n∈ω(Y2n+1 \ Y2n+2). By their definition, X ′ and Y ′ are both

in Σ0
α+1. Since X \ X ′ =

⋃
n∈ω(X2n+1 \ X2n) and Y \ Y ′ =

⋃
n∈ω(Y2n \ Y2n+1) are
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both in Σ0
α+1 as well, we have that X ′, Y ′ ∈ ∆0

α+1. Finally, f � X ′ and g−1 � (X \X ′)
witness that X ′ 'F Y ′ and X \X ′ 'F Y \ Y ′ because F is closed under restrictions and

(f � X ′)−1 = f−1 � Y ′ and (g−1 � (X \X ′))−1 = g � (Y \ Y ′).

We can immediately derive some corollaries from Lemma 4.8. We need to recall the

following definition from general topology: two spaces are of the same Fréchet dimension

type if each one is homeomorphic to a subset of the other.

Corollary 4.9. If X,Y are two quasi-Polish spaces which are of the same Fréchet di-

mension type then X 'W
3 Y .

Proof. Apply the second part of Lemma 4.8 with α = 2, using the fact that the class

of quasi-Polish spaces is closed under homeomorphism and Proposition 2.9.

The second part of the next corollary has been essentially already noticed in (Jayne

and Rogers 1979b, Theorem 6.5).

Corollary 4.10. If X,Y are two quasi-Polish spaces such that X is homeomorphic to a

closed subset of Y and Y is homeomorphic to a closed subset of X then X 'W
2 Y .

In particular, if X,Y are compact Hausdorff quasi-Polish spaces of the same Fréchet

dimension type then X 'W
2 Y .

Proof. The first part follows from Lemma 4.8 with α = 1. The second part follows

from the first one and the classical facts that the class of compact spaces is closed under

continuous images, and that a compact subset of an Hausdorff space is closed.

Our next goal is to extend Proposition 4.7 (3)–(5) to a wider class of quasi-Polish spaces

(see Theorem 4.21). Such generalization will involve the definition of the (inductive)

topological dimension of a spaceX, denoted in this paper by dim(X) — see e.g. (Hurewicz

and Wallman 1948, p. 24).

Definition 4.11. The empty set ∅ is the only space in X with dimension −1, in symbols

dim(∅) = −1.

Let α be an ordinal and ∅ 6= X ∈X . We say that X has dimension ≤ α, dim(X) ≤ α
in symbols, if every x ∈ X has arbitrarily small neighborhoods whose boundaries have

dimension < α, i.e. for every x ∈ X and every open set U containing x there is an open

x ∈ V ⊆ U such that dim(∂V ) ≤ β (where ∂V = cl(V ) \ V and cl(V ) is the closure of V

in X) for some β < α.

We say that a space X has dimension α, dim(X) = α in symbols, if dim(X) ≤ α and

dim(X) � β for all β < α.

Finally, we say that a space X has dimension∞, dim(X) =∞ in symbols, if dim(X) �
α for every α ∈ On.

It is obvious that the dimension of a space is a topological invariant (i.e. dim(X) =

dim(Y ) whenever X and Y are homeomorphic). Moreover, one can easily check that

dim(X) ≤ α (for α an ordinal) if and only if there is a base of the topology of X consisting

of open sets whose boundaries have dimension < α. Therefore, if X is countably based

and dim(X) 6=∞, then dim(X) = α for some countable ordinal α.
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The following lemma shows that the notion of dimension is monotone.

Lemma 4.12. (Hurewicz and Wallman 1948, Theorem III 1) Let X ∈ X and α be an

ordinal such that dim(X) ≤ α. Then for every Y ⊆ X, dim(Y ) ≤ α (where Y is endowed

with the relative topology inherited from X).

Proof. This is proved by induction on α, using the fact that if Y ⊆ X and U is open

in X then the boundary in Y of U ∩ Y is contained in the boundary of U in X.

It is a classical fact that for every α < ω1 there is a compact Polish space of dimension

α, and that the Hilbert cube [0, 1]ω is a compact Polish space of dimension ∞. Here we

provide various examples of computations of the dimension of some concrete quasi-Polish

spaces which are relevant for the results of this paper.

Example 4.13. Finite dimension.

(1) dim(N ) = dim(C) = 0;

(2) dim(Rn) = n for every 0 6= n ≤ ω;

(3) for n < ω, let Ln be the (finite) quasi-Polish space obtained by endowing the dcpo

(n,≤) with the Scott (equivalently, the Alexandrov) topology: then dim(Ln) = n−1.

Proof. (1) The canonical basis for N and C (namely, the collection of all sets of the

form σ · N for σ ∈ ω∗ and, respectively, σ · C for σ ∈ 2∗) consist of clopen sets, hence

their elements have empty boundary.

(2) This is a classical (nontrivial) fact, see e.g. (Hurewicz and Wallman 1948, Theorem

IV 1).

(3) This is proved by induction on n ≥ 0. If n = 0, then Ln = ∅ and hence dim(L0) =

−1 by definition. Now assume dim(Li) = i for every i ≤ n and consider the space Ln+1.

Every open set of Ln is of the form Ui = {j ∈ Ln+1 | j ≥ i} for some i ≤ n, and

∂Ui = Li: hence by the inductive hypothesis dim(∂Ui) < n + 1 for every i ≤ n, which

implies dim(Ln+1) ≤ n+ 1. Moreover, the set {n} is open in Ln+1, and is obviously the

minimal open set containing n. Since ∂{n} = Ln, dim(Ln+1) > dim(Ln) = n. Therefore

dim(Ln+1) = n+ 1, as desired.

Example 4.14. Transfinite dimension.

(1) the disjoint union X =
⊔

0 6=n∈ω[0, 1]n of the n-dimensional cubes [0, 1]n is a Polish

space of dimension ω;

(2) let ω≤ω be the ω-algebraic domain (ω≤ω,v) endowed with the Scott topology: then

dim(ω≤ω) = ω;

(3) for α < ω1, let Lα+1 be the quasi-Polish space obtained by endowing the dcpo‡‡

(α+ 1,≤) with the Scott topology. Then dim(Lα+1) = α.

Proof. (1) By part (2), each [0, 1]n has dimension n. Since [0, 1]n is topologically embed-

ded in X, by Lemma 4.12 we have dim(X) ≥ n for every n ∈ ω, and hence dim(X) ≥ ω.

Let Bn = {Bn,m | m ∈ ω} be a countable basis of [0, 1]n such that dim(∂Bn,m) < n for

‡‡ Here we cannot consider the limit case, as if α is limit then the poset (α,≤) is not directed-complete,

and hence falls out of the scope of the spaces considered in this paper.
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every m ∈ ω. Then B =
⋃
n∈ω Bn is a basis for X with the property that for every U ∈ B,

dim(∂U) < ω: hence dim(X) ≤ ω, and therefore dim(X) = ω.

(2) Since every Ln can be topologically embedded in ω≤ω, dim(ω≤ω) ≥ ω by Lemma 4.12

and Example 4.13(2). Consider the basis B of ω≤ω consisting of the open sets generated by

its compact elements, i.e. of the sets σ ·ω≤ω for σ ∈ ω∗. Then ∂σ ·ω≤ω = {τ v σ | τ 6= σ}.
Therefore ∂σ · ω≤ω is homeomorphic to Ln, where n is the length of σ: this means that,

by Example 4.13(2) again, dim(∂U) < ω for every U ∈ B, and hence dim(ω≤ω) ≤ ω.

Therefore dim(ω≤ω) = ω.

(3) By an inductive argument similar to the proof of Example 4.13(3).

Example 4.15. Dimension ∞.

(1) the Hilbert cube [0, 1]ω, the space Rω (both endowed with the product topology), and

the Scott domain Pω have all dimension ∞;

(2) Let C∞ be the quasi-Polish space obtained by endowing the poset (ω,≥) with the

Scott (equivalently, the Alexandrov) topology. Then C∞ is a (scattered) countable

space with dim(C∞) = ∞. Hence the space UC∞ = C∞ × N , endowed with the

product topology, is an (uncountable) quasi-Polish space of dimension ∞.

Proof. (1) It is a classical fact that dim([0, 1]ω) = dim(Rn) =∞ — see e.g. Corollary

on p. 51 of (Hurewicz and Wallman 1948). Since the Hilbert cube can be topologically

embedded into Pω by Proposition 2.12, it follows from Lemma 4.12 that also the Scott

domain has dimension ∞.

(2) To show that a topological space X has dimension ∞ it is enough to find a point

x ∈ X and an open neighborhood U of x such that X can be topologically embedded into

∂V for every open x ∈ V ⊆ U . Consider the point 0 ∈ C∞. Since 0 is a compact element,

the basic open set U =↑0 = {0} generated by 0 is a minimal (with respect to inclusion)

open neighborhood for this point, hence it is enough to show that C∞ can be topologically

embedded into ∂U . Since C∞ has a topmost element (i.e. 0 itself), ∂U = C∞\U ; but then

the map sending n into n + 1 (for every n ∈ ω) is clearly an homeomorphism between

C∞ and C∞ \ U , and hence dim(C∞) = ∞, as required. The second part of the claim

follows from Lemma 4.12 and the fact that C∞ can be topologically embedded into UC∞
in the obvious way.

Remark 4.16. The definition of dimension is usually formulated for separable metric

spaces (Hurewicz and Wallman 1948) or for regular topological spaces. This is because

the received opinion is that outside this scope this notion becomes somewhat pathologi-

cal. Examples 4.13, 4.14 and 4.15 show e.g. that there are finite (quasi-Polish) spaces with

nonzero dimension,§§ and countable (quasi-Polish) spaces with arbitrarily high ordinal

dimension, or even of dimension ∞: this seems to contradict our intuition of “geometric

dimension”. Nevertheless, Lemma 4.12 shows that some natural properties of the dimen-

sion function dim(·) are preserved when considering arbitrary spaces, and Theorem 4.21

will show that it remains a quite useful notion also in this broader context.

§§ Notice that there are also examples of Hausdorff countable spaces with nonzero dimension.
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We now recall some classical results that will be used later.

Lemma 4.17. (see e.g. (Hurewicz and Wallman 1948, pp. 50-51)) Let X be a Polish

space. Then the following are equivalent:

(1) dim(X) 6=∞;

(2) X =
⋃
n<ωXn with all the Xn of finite dimension (i.e. dim(Xn) < ω for every n < ω);

(3) X =
⋃
n<ωXn with all the Xn of dimension 0.

Notice that by Example 4.15(2), Lemma 4.17 cannot be extended to the context of

arbitrary quasi-Polish spaces: the space C∞ has dimension ∞, but can be decomposed

into countably many zero-dimensional spaces (namely, its singletons). Similarly, UC∞
can be decomposed into countably many copies of N . On the other hand, we have the

following corollary.

Corollary 4.18. The Scott domain Pω cannot be written as
⋃
n<ωXn with all the Xn

of finite dimension. The same is true if Pω is replaced with any quasi-Polish space which

is universal for (compact) Polish spaces.

Proof. Since Pω is universal for the class of all (quasi-)Polish spaces by Proposi-

tion 2.12, any decomposition into countably many finite dimensional spaces of Pω would

induce a similar decomposition of e.g. [0, 1]ω, contradicting Lemma 4.17.

Lemma 4.19. (Jayne and Rogers 1979b, Theorem 6.1) Let X be an uncountable zero-

dimensional Polish space:

(1) if X is σ-compact then X 'W
2 C;

(2) if X is not σ-compact then X 'W
2 N .

Proof. First assume that X is σ-compact. Since C is (σ-)compact as well, it is enough to

show that X 'W
2 (ω × C) ∪ (ω × {3ω}). Let Kn be compact sets such that X =

⋃
n∈ωKn.

Notice that since X is zero-dimensional we can assume that the Kn’s are pairwise disjoint.

(If not, replace the Kn’s with any closed refinement of the partition of X given by the

sets Dn = Kn \
⋃
i<nKi ∈ ∆0

2.) By the Cantor-Bendixson theorem (Kechris 1995,

Theorem 6.4) and the obvious fact that every uncountable zero-dimensional Polish space

can be partitioned into countably many closed sets such that infinitely many of them are

uncountable and infinitely many of them are singletons, we can further assume that all the

K2n are nonempty and perfect and all the K2n+1 are singletons. By Brouwer’s theorem

(Kechris 1995, Theorem 7.4), for every n ∈ ω there is an homeomorphism f2n between

K2n and {n}×C. Let f2n+1 be the constant function sending the unique point in K2n+1

to (n, 3ω). Then the closed partitions 〈Kn | n ∈ ω〉 and 〈{n} × C, {(n, 3ω)} | n ∈ ω〉 of,

respectively, X and (ω×C)∪(ω×{3ω}), together with the homeomorphisms 〈fn | n ∈ ω〉,
witness that X 'pw(∆0

2)
(ω × C) ∪ (ω × {3ω}), and hence X 'W

2 (ω × C) ∪ (ω × {3ω}) by

Lemma 4.2.

Now assume that X is not σ-compact. By Hurewicz’ theorem (see e.g. (Kechris 1995,

Theorem 7.10), X contains a closed set homeomorphic to N . Conversely, by (Kechris

1995, Theorem 7.8) we have that X, being zero-dimensional, is homeomorphic to a closed

subset of N . Hence X 'W
2 N by Lemma 4.8.
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Remark 4.20. Formally, (Jayne and Rogers 1979b, Theorem 6.1) is stated using D2-

isomorphisms instead of DW
2 -isomorphisms. However, our formulation can be recovered

from that result a posteriori by using (Jayne and Rogers 1982, Theorem 5).

We are now ready to prove the main theorem of this section.

Theorem 4.21. Let X be an uncountable quasi-Polish space.

(1) if dim(X) 6= ∞ then there is a bijection f : N → X such that f ∈ DW
2 (N , X) and

f−1 ∈ DW
3 (X,N ). In particular, N 'W

3 X;

(2) if dim(X) = ∞ and X is Polish then N 6'W
α X for every α < ω1 and N 6'n X for

every n < ω;

(3) Pω 6'W
α N for every α < ω1 and Pω 6'n N for every n < ω. The same result holds

when replacing Pω with any other quasi-Polish space which is universal for (compact)

Polish spaces;

(4) UC∞ 'W
2 N . Therefore UC∞ 6'W

α X (α < ω1) and UC∞ 6'n X (n ∈ ω) for X a Polish

space of dimension ∞ (e.g. X = [0, 1]ω or X = Rω) or X = Pω.

Proof. (1) Since X is uncountable (hence nonempty) and countably based, we can

assume 0 ≤ dim(X) < ω1. We argue by induction on dim(X) = α. If α = 0, then X is

Hausdorff and regular. By the Urysohn’s metrization theorem (Kechris 1995, Theorem

1.1), we have that X is metrizable and hence Polish by Proposition 2.14. Therefore

the claim for X follows from Lemma 4.19 and Proposition 4.7(3). Now assume that

α > 0 and that the claim is true for every quasi-Polish space of dimension < α. Let

B = {Bn | n ∈ ω} be a countable base for the topology of X such that dim(∂Bn) < α

for every n ∈ ω. Let X ′ = X \
⋃
n∈ω ∂Bn and inductively define B′n = ∂Bn \

⋃
i<n ∂Bi.

All of X ′, B′n are Π0
2(X) sets, so they are quasi-Polish by Proposition 2.9. Moreover,

they clearly form a (countable) partition of X. The space X ′ is zero-dimensional, so

by Lemma 4.19 and Proposition 4.7(3) there is a bijection f0 : {0} × N → X ′ such

that f0 ∈ DW
2 ({0} × N , X ′) and f−10 ∈ DW

3 (X ′, {0} × N ). By our hypothesis on B and

Lemma 4.12, dim(B′n) < α for every n ∈ ω, hence by inductive hypothesis for each n ∈ ω
there is a bijection fn+1 : {n + 1} × N → B′n such that fn+1 ∈ DW

2 ({n + 1} × N , B′n)

and f−1n+1 ∈ DW
3 (B′n, {n+ 1} ×N ). Let h be an homeomorphism between N and ω ×N :

then, using the fact that each {n} × N is clopen in ω × N and all of X ′, B′n are in

Π0
2(X) ⊆ ∆0

3(X), it is straightforward to check that f =
(⋃

n∈ω fn

)
◦ h : N → X is a

bijection such that f ∈ DW
2 (N , X) and f−1 ∈ DW

3 (X,N ).

(2) For the first part, assume toward a contradiction that N 'W
α X for some α < ω1.

Then N 'pw(∆0
α)
X by Lemma 4.2, i.e. there would be countable partitions 〈Yn | n ∈

ω〉, 〈Xn | n ∈ ω〉 in ∆0
α sets of, respectively,N andX such that Yn is homeomorphic toXn

for every n ∈ ω. In particular, by Lemma 4.12 each of the Yn would be zero-dimensional,

and since homeomorphisms preserve dimension, we would also have dim(Xn) = 0 for

every n ∈ ω, contradicting Lemma 4.17.

For the second part, we argue again by contradiction. Let f be a witness of N 'n X
(for some n ∈ ω). By Proposition 3.11, both f and f−1 are decomposable, and hence
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N 'pw X by Lemma 4.2. From this fact, arguing as in the first part, we again reach a

contradiction with Lemma 4.17.

(3) For the first part, argue as in part (2), using Corollary 4.18 instead of Lemma 4.17.

For the second part, assume towards a contradiction that Pω 'n N (for some n < ω).

Since Pω is universal for quasi-Polish spaces by Proposition 2.12, there is a Π0
2(Pω) set

X which is homeomorphic to [0, 1]ω, and hence the image Y ⊆ N of X under any witness

of Pω 'n N would be a Borel set such that Y 'n [0, 1]ω. Arguing as in part (2), we

reach a contradiction with Lemma 4.17.

(4) Since N is homeomorphic to ω × N , it is enough to prove that UC∞ 'W
2 ω × N .

Since each element of C∞ is compact, {n} ∈ ∆0
2(C∞) for every n ∈ ω. Hence the sets

Xn = {n}×N , which are all homeomorphic to N , form a countable partition of UC∞ in

∆0
2 pieces. It follows that UC∞ 'pw(∆0

2)
ω ×N , whence UC∞ 'W

2 ω ×N by Lemma 4.2.

The second part of the claim follows from the first one and parts (2) and (3).

Remark 4.22.

(1) The special case of Theorem 4.21(1) in which X is assumed to be Polish essentially

appeared in (Jayne and Rogers 1979b, Theorem 8.1). The unique differences are that

in their statement Jayne and Rogers used the assumption that X is a countable

union of spaces of finite dimension (which for X Polish is equivalent to dim(X) 6=∞
by Lemma 4.17), and that the conclusion is weakened in (Jayne and Rogers 1979b,

Theorem 8.1) to N '3 X (but their proof already gives the more precise statement

considered here). Concerning the proofs, at a first glance the Jayne-Rogers original

argument could seem different from the one used here, as it does not involve any

induction on the dimension. However, their argument heavily relies on (Hurewicz and

Wallman 1948, Theorem III 3), whose proof already implicitly shows the result under

consideration and is essentially the same as the one we used above. Therefore the

instance of Theorem 4.21(1) concerning Polish spaces can be dated back at least to

the work of Hurewicz and Wallman of 1948.

(2) Theorem 4.21(1) is optimal: in fact by (the obvious generalization to transfinite di-

mension of) (Jayne and Rogers 1982, Theorem 13), ifX '2 Y then dim(X) = dim(Y ).

The converse is not true, as if X is a compact Polish space of dimension α < ω1, then

dim(X t N ) = dim(X) = α (by the generalization to transfinite dimensions of the

Sum Theorem (Hurewicz and Wallman 1948, Theorem III 2)) but X t N 6'2 X by

(Jayne and Rogers 1982, Theorem 5) and Remark 4.6. Nevertheless, in some specific

cases one can get a better bound, e.g.:

(a) Let X be an uncountable Polish space embedded in Rn. Then X is D2-isomorphic

(equivalently, DW
2 -isomorphic) to Rn if and only if it is σ-compact and of dimension

n (Jayne and Rogers 1979b, Theorem 6.3);

(b) A Polish space that is locally Euclidean of dimension n is D2-isomorphic (equiva-

lently, DW
2 -isomorphic) to Rn (Jayne and Rogers 1979b, Theorem 6.4);

(c) Let X,Y be two σ-compact metric spaces of dimension α < ω1 that are universal

for the compact metric spaces of dimension α. Then X '2 Y by Theorem 7.1

in (Jayne and Rogers 1979b).
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Theorem 4.21 has also several corollaries which generalize many results of various

nature. The first one is related to Lemma 4.17. Recall that a zero-dimensional space X

is called h-homogeneous if every clopen U ⊆ X is homeomorphic to the entire space X.

Examples of (uncountable) h-homogeneous spaces are N and C.

Corollary 4.23. Let X be an uncountable Polish space. Then the following are equiv-

alent:

(1) dim(X) 6=∞;

(2) X =
⋃
n<ωXn with all the Xn of finite dimension (equivalently, of dimension 6= ∞,

or of dimension 0);

(3) X =
⋃
n<ωXn with each Xn a zero-dimensional h-homogeneous Polish space;

(4) X 'n N for some n < ω;

(5) X 'W
3 N .

Proof. (1) ⇒ (5) by Theorem 4.21(1), (5) ⇒ (4) is obvious, and (4) ⇒ (1) by The-

orem 4.21(2). Moreover (3) ⇒ (2) is obvious, and (2) ⇒ (1) by Lemma 4.17, so it is

enough to show (5) ⇒ (3). By Lemma 4.2, N 'pw(∆0
3)
X. It is a classical fact that every

countable partition of N into ∆0
3 pieces can be refined to a countable partition in Π0

2

pieces, hence there is a countable partition 〈X ′n | n ∈ ω〉 of X such that each Xn is home-

omorphic to a Π0
2-subset of N . This means that each X ′n is a Polish zero-dimensional

space. By e.g. (Ostrovsky 2011, Theorem 1), all of these X ′n can be written as countable

unions
⋃
m∈ωXn,m of h-homogeneous spaces such that Xn,m ∈ Π0

2(Xn) for all m ∈ ω.

Thus each Xn,m is Polish by (Kechris 1995, Theorem 3.11), and hence any enumeration

without repetitions 〈Xn | n ∈ ω〉 of {Xn,m | n,m, ω} satisfies all the requirements of (3).

Obviously, conditions (1)–(4) are true also when X is a countable Polish space and N is

replaced by ω: however, the counterexamples C∞ and UC∞ of Example 4.15(2) show that

this is no more true for countable quasi-Polish spaces, and that Corollary 4.23 cannot be

extended in general to arbitrary quasi-Polish spaces. Nevertheless we have the following:

Corollary 4.24. Let X be an arbitrary quasi-Polish space of dimension 6=∞. Then X

can be written as a countable union of zero-dimensional h-homogeneous Polish spaces.

Proof. If X is countable the result is trivial (simply take the singletons of the elements

of X as countable partition). If X is uncountable, it is enough to observe that the proofs

of (1) ⇒ (5) and (5) ⇒ (3) of Corollary 4.23 are in fact valid for arbitrary uncountable

quasi-Polish spaces.

The next corollary extends Semmes’ generalization (Theorem 3.4 in this paper) of

Jayne-Rogers (Jayne and Rogers 1982, Theorem 5).

Corollary 4.25. Let X be any quasi-Polish space which is either countable or of dimen-

sion 6=∞. Then D3(X) = DW
3 (X).

Proof. If X is countable the result follows from Proposition 2.13 because then every

function f : X → X is in DW
3 (X). If X is uncountable, the result follows from Theo-
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rem 4.21(1) and the fact that both the classes
⋃
X,Y ∈X D3(X,Y ) and

⋃
X,Y ∈X DW

3 (X,Y )

are closed under composition.

This corollary shows an interesting phenomenon: Jayne-Rogers’ original result stating

that D2(X) = DW
2 (X) (Jayne and Rogers 1982, Theorem 5) can arguably be considered to

be simpler, even in the case X = N , than Theorem 3.4. However, contrarily to the case of

Corollary 4.25, it cannot be generalized to ω-algebraic domains, as shown by the following

counterexample communicated to the authors by M. de Brecht. Let X = (ω + 1,≤) be

endowed with the Scott topology (i.e. X = Lω+1 from Example 4.14(3)), and consider

the function f : X → X defined by f(ω) = ω, f(2i) = 2i+1 and f(2i+1) = 2i (for every

i ∈ ω): then f ∈ D2(X) \DW
2 (X). (A similar counterexample can of course be given also

for uncountable quasi-Polish spaces — it is enough to consider the space X ×N and the

map (x, y) 7→ (f(x), y), where f is the function defined above.)

The assumption that X be of dimension 6=∞ in the uncountable case of Corollary 4.25

is not a true limitation: for example, by using Theorem 4.21(4), one gets that the corollary

remains true also for X = UC∞. However, the general case remains unclear.

Question 4.26. Is it possible to further generalize Corollary 4.25 to all uncountable

(quasi-)Polish spaces of dimension ∞?

Notice that if Corollary 4.25 holds true for a space which is universal for all (quasi-)Polish

spaces, then the answer to the previous question is automatically positive.

Finally, the next corollary generalizes a recent result of Ostrovsky (Ostrovsky 2011,

p. 663) concerning the possibility of representing Borel sets as countable unions of h-

homogeneous Π0
2 sets.

Corollary 4.27. Let X be a quasi-Polish space of dimension 6= ∞. Then every Borel

set B ⊆ X can be partitioned into countably many h-homogeneous Π0
2 subspaces of B.

Proof. By Theorem 4.21(1), B 'W
3 B′ for some Borel B′ ⊆ N , hence by Lemma 4.2

there are two countable partitions 〈Bn | n ∈ ω〉 and 〈B′n | n ∈ ω〉 of, respectively, B and

B′ into ∆0
3 pieces such that Bn is homeomorphic to B′n for every n ∈ ω. Inspecting the

proofs of the mentioned results, it is not hard to see that all of the Bn, B
′
n can in fact

be assumed to be in Π0
2. By (Ostrovsky 2011, Theorem 1), each B′n can be partitioned

into a countable union of h-homogeneous Π0
2(B′n) (hence also Π0

2(B′)) sets. Therefore, a

similar decomposition can be obtained also for the Bn’s, and the union of these partitions

gives the desired partition of B.

Theorem 4.21(2)-(4) shows that the bound for the complexity of an isomorphism be-

tween arbitrary (quasi-)Polish spaces obtained in Proposition 4.3 cannot be improved,

but leaves open the problem of computing the minimal complexity of an isomorphism

between two Polish spaces with dimension ∞. In this direction, we can make some basic

observation.

Proposition 4.28. Let X,Y be (quasi-)Polish spaces of dimension ∞.

(1) If X,Y are both universal for the class of all (quasi-)Polish spaces then X 'W
3 Y .
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(2) The Hilbert cube [0, 1]ω and the space Rω are both universal for Polish spaces, but

[0, 1]ω 6'W
2 Rω (i.e. [0, 1]ω 6'2 Rω): hence the bound of part (1) cannot be improved.

(3) If X and Y are compact Hausdorff spaces and they are both universal for compact

Polish spaces then X 'W
2 Y .

Proof. Parts (1) and (3) follow from Corollaries 4.9 and 4.10, respectively. Part (2)

follows from Remark 4.6, the fact that the Hilbert cube [0, 1]ω is compact (by Tychonoff’s

theorem (Kechris 1995, Proposition 4.1 (vi))), and the fact that the space Rω is not σ-

compact. To see this, consider
⋃
n∈ωKn ⊆ Rω with all Kn compact: we will show that

Rω \
⋃
n∈ωKn 6= ∅. For every n ∈ ω, let πn : Rω → R be the projection on the n-

th coordinate. Since πn is continuous, πn(Kn) ⊆ R is compact, hence there is xn ∈
R \ πn(Kn). Notice that every y = 〈yk | k ∈ ω〉 ∈ Rω with yn = xn does not belong to

Kn: hence x = 〈xn | n ∈ ω〉 ∈ Rω \
⋃
n∈ωKn, as required.

Question 4.29. Are there Polish spaces X,Y of dimension ∞ such that X 6'W
3 Y ? Are

there Polish spaces X,Y of dimension ∞ such that X 6'n Y for every n ∈ ω?

5. Degree structures in quasi-Polish spaces

In this section we will analyze the F-hierarchies on X for various reducibilities F and

various quasi-Polish spaces X. We start with some general ways to transfer results about

the F-hierarchy from one quasi-Polish space to another (for a fixed collection F).

Definition 5.1. Let F be a collection of functions between topological spaces. For

X,Y ∈ X , denote by F(X,Y ) the collection of functions from F with domain X and

range included in Y (obviously, Y ⊆ Y ′ implies F(X,Y ) ⊆ F(X,Y ′)). The collection F
is said family of reducibilities if the following conditions hold:

(1) F contains all the identity functions, i.e. idX ∈ F(X,X) for every X ∈X (and hence

idX ∈ F(X,Y ) for every X ⊆ Y ∈X );

(2) F is closed under composition, i.e. if X,Y, Z ∈ X , f ∈ F(X,Y ) and g ∈ F(Y, Z)

then g ◦ f ∈ F(X,Z);

(3) F is closed under restrictions, i.e. for every X,Y ∈X , f ∈ F(X,Y ) and X ′ ⊆ X, we

have f � X ′ ∈ F(X ′, Y ).

For X ∈ X , we will abbreviate F(X,X) with F(X). Notice that if F is a family of

reducibilities then F(X) is a reducibility on X for every X ∈ X by conditions (1) and

(2). Notice that all the classes of functions considered in Section 3, namely

-
⋃
X,Y ∈X Dα(X,Y ) for α < ω1,

-
⋃
X,Y ∈X DW

α (X,Y ) for α < ω1, and

-
⋃
X,Y ∈X Bγ(X,Y ) =

⋃
X,Y ∈X

⋃
β<γ Σ0

β,1(X,Y ) for γ < ω1 additively closed,

are in fact families of reducibilities. With a little abuse of notation, in what follows we

will denote the above families of reducibilities by, respectively, Dα, DW
α and Bγ whenever

this is not a source of confusion.
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Proposition 5.2. Let F be a family of reducibilities and X,Y ∈ X . If X 'F Y then

(P(X),≤XF ) is isomorphic to (P(Y ),≤YF ) and, moreover, (SX ,≤S,XF ) is isomorphic to

(SY ,≤S,YF ) for every set S.

Proof. It is enough to consider the more general case of X- and Y -namings, so let us fix

a set S. Let f : X → Y be a bijection such that both f ∈ F(X,Y ) and f−1 ∈ F(Y,X).

Then ν 7→ ν ◦ f−1 is an isomorphism between (SX ,≤S,XF ) and (SX ,≤S,YF ). In fact, if

µ ≤S,XF ν via g ∈ F(X) then µ ◦ f−1 ≤S,YF ν ◦ f−1 via f ◦ g ◦ f−1, which is in F(Y ) since

F is closed under composition. Similarly, if µ ◦ f−1 ≤S,YF ν ◦ f−1 via some h ∈ F(Y ),

then µ ≤S,XF ν via f−1 ◦ h ◦ f ∈ F(X).

Notice that the converse to Proposition 5.2 does not hold in general. For example, it

is not hard to check that (under AD) the D2-hierarchies on, respectively, N and C are

isomorphic (in fact, they are isomorphic to the Wadge hierarchy on N ), while N 6'D2 C
by Proposition 4.7(2).

Definition 5.3. Let F be a family of reducibilities and X ∈X . We say that Y ⊆ X is

an F-retract of X if there is r ∈ F(X,Y ) such that r � Y = idY (such an r will be called

F-retraction of X onto Y ).

The next fact extends (Selivanov 2005, Proposition 2.3).

Proposition 5.4. Let F be a family of reducibilities and X ∈ X . If Y is an F-retract

of X, then there is an injection from (P(Y ),≤YF ) into (P(X),≤XF ). Similarly, for every

set S there is an injection from (SY ,≤S,YF ) into (SX ,≤S,XF ).

Proof. It is again enough to consider the more general case of X- and Y -namings. Let

r : X → Y be an F-retraction of X onto Y . Then the map ν 7→ ν ◦ r is an injection of

(SY ,≤S,YF ) into (SX ,≤S,XF ). In fact, if µ ≤S,YF ν via some g ∈ F(Y ), then it is easy to

check that µ◦r ≤S,XF ν via g◦r, which is in F(X) because F is closed under composition.

Conversely, if µ ◦ r ≤S,XF ν ◦ r via some h ∈ F(X) then µ ≤S,YF ν via r ◦ (h � Y ), which

is in F(Y, Y ) because F is closed under composition and restrictions.

Corollary 5.5. Let ∅ 6= Y ⊆ X be quasi-Polish spaces, S be a set, and F be a family of

reducibilities. If DW
3 (X,Y ) ⊆ F then there is an injection from (P(Y ),≤YF ) (respectively,

(SY ,≤S,YF )) into (P(X),≤XF ) (respectively, (SY ,≤S,YF )).

The same conclusion holds also if Y ∈∆0
2(X) and DW

2 (X,Y ) ⊆ F .

Proof. The map f : X → Y such that f � Y = idY and f(x) = y0 for x ∈ X \Y (where

y0 is any fixed element of Y ) is a DW
3 -retraction of X onto Y because Y ∈ Π0

2(X) by

Proposition 2.9. If moreover Y ∈∆0
2(X), then f is also a DW

2 (X,Y )-retraction of X onto

Y . Hence the result follows from Proposition 5.4.

Corollary 5.6. Let F be a family of reducibilities such that
⋃
X,Y ∈X DW

3 (X,Y ) ⊆ F .

The F-hierarchy on Pω is (very) good if and only if for all quasi-Polish spaces X, the

F-hierarchy on X is (very) good. Similarly, the F-hierarchy on Pω is (very) bad if and

only if there exists a quasi-Polish space X such that the F-hierarchy on X is (very) bad.



L. Motto Ros, P. Schlicht and V. Selivanov 32

The same result holds when replacing Pω with the Hilbert cube or with the space Rω,

and letting X vary only on Polish spaces.

Proof. By Corollary 5.5 and the fact that Pω (respectively, [0, 1]ω or Rω) is universal

for the class of quasi-Polish (respectively, Polish) spaces.

Lemma 5.7. (Folklore) Let ≤,� be preorders on an arbitrary set A such that � extends

≤ (i.e. ≤ ⊆ �).

(1) every antichain with respect to � is an antichain with respect to ≤;

(2) if ≤ is a wqo then so is �.

Proof. Part (1) is obvious, so let us consider just part (2). By (1), � cannot contain

infinite antichains. Assume towards a contradiction that a0 � a1 � . . . is an infinite

(countable) �-decreasing sequence of elements from A. Clearly ai � aj for every i < j.

Define a coloring c : [ω]2 → {0, 1} by setting (for i < j ∈ ω) c({i, j}) = 0 ⇐⇒ aj ≤ ai.

By Ramsey’s theorem, there is an infinite H ⊆ ω such that c � [H]2 is constantly equal

to either 0 or 1. In the first case the sequence ~a = 〈ai | i ∈ H〉 is an infinite ≤-descending

chain, while in the second case ~a is an infinite ≤ antichain: therefore, in both cases we

reach a contradiction with the fact that ≤ is a wqo.

Proposition 5.8. Suppose F ⊆ G are families of reducibilities and X is quasi-Polish.

(1) If (P(X),≤XF ) is very good, then so is (P(X),≤XG ). Similarly, for every set S, if

(SX ,≤XF ) is very good, then so is (SX ,≤XG ). The same results hold when replacing

very good with good.

(2) If the G-hierarchy on X is (very) bad, then the F-hierarchy on X is bad. Similarly,

for every set S ∈ P(X), if (SX ,≤XG ) is (very) bad, then (SX ,≤XF ) is bad.

Proof. Use Lemma 5.7.

Notice that Proposition 5.8(2) cannot be strenghtened to the statement: “If the G-

hierarchy on X is very bad, then the F-hierarchy on X is very bad”. This is because

it is possible that every ≤XG -descending chain of subsets of X in fact consists of ≤XF -

incomparable elements.

Remark 5.9. Notice that if the so-called Semi-linear Ordering Principle for F on the

space X

∀A,B ⊆ X (A ≤XF B ∨B ≤XF A) (SLOF,X)

holds (which is the case, under AD, for every F ⊇ W and X zero-dimensional Polish

space), then the first part of Proposition 5.8(1) can be strengthened to the following:

- There is an injection from (P(X),≤XG ) into (P(X),≤XF ).

This is because in this case (DXG ,≤) is a coarsification of (DXF ,≤). To see this, it is

enough to show that if A,B ⊆ X are such that A <XG B then A <XF B. Clearly, B �XF A,

so it remains to show that A ≤XF B. Notice that SLOF,X ⇒ SLOG,X , hence A <XG B as

well. This implies that B �XF A, and hence A ≤XF B by SLOF,X .
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Corollary 5.10. Let F ⊇ W be a reducibility on N and k ∈ ω. Then ((∆1
1(N ))k,≤F )

is good (but not very good if k ≥ 3). Similarly, under AD we have that ((P(N ))k,≤F )

is good (but not very good if k ≥ 3).

Proof. The claim is well-known for F = W (see the discussion in Subsection 2.6). For

W ( F , apply Proposition 5.8(1). To see that ((∆1
1(N ))k,≤F ) is not very good when

k ≥ 3, notice that the k-partitions νi : N → k (for i < k) defined by νi(x) = i for every

x ∈ N are in fact clopen partitions and are pairwise ≤F -incomparable.

Remark 5.11. Notice that all the previous results hold “locally” i.e. when considering

(Γ,F)-hierarchies in place of F-hierarchies, as long as Γ is a family of pointclasses closed

under F-preimages, i.e. such that for every X,Y ∈ X and f ∈ F(X,Y ), if A ∈ Γ(Y )

then f−1(A) ∈ Γ(X).

5.1. Degree structures in uncountable quasi-Polish spaces

In this subsection we consider various reducibilities F and study the F-hierarchies on

arbitrary uncountable quasi-Polish spaces X. We begin with an important corollary to

the results obtained in Section 4.

Theorem 5.12. Let X be an uncountable quasi-Polish space and F be a family of

reducibilities.

(1) If dim(X) = 0, then the F-hierarchy on X can be embedded into the F-hierarchy

on N for every F ⊇ D1 = W. Hence the (B,F)-hierarchy on X is very good, and

assuming AD the entire F-hierarchy on X is very good.

(2) Assume dim(X) = 0 and that F ⊇ DW
2 = D2. If X is σ-compact then the F-hierarchy

on X is isomorphic to the F-hierarchy on C, while if X is not σ-compact then the

F-hierarchy on X is isomorphic to the F-hierarchy on N . Hence, if e.g. F = Dα for

some α ≥ 2, then the (B,F)-hierarchy on X is isomorphic to the (B,D1)-hierarchy

on N , and assuming AD the entire F-hierarchy on X is isomorphic to the Wadge

hierarchy on N .

(3) If dim(X) 6= ∞ then the F-hierarchy on X is isomorphic to the F-hierarchy on N
whenever F ⊇ DW

3 . Hence the (B,F)-hierarchy on X is very good, and assuming AD

the F-hierarchy on X is very good as well. Moreover, if e.g. F = Dα for some α ≥ 3,

then the F-hierarchy on X is isomorphic to the Wadge hierarchy on N .

(4) If X is universal for Polish (respectively, quasi-Polish) spaces and F ⊇ DW
3 , then the

F-hierarchy on X is isomorphic to the F-hierarchy on [0, 1]ω (respectively, on Pω).

Moreover, the F-hierarchy on X is (very) good if and only if the F-hierarchy on

every Polish (respectively, quasi-Polish) space is (very) good, and it is (very) bad if

and only if the F-hierarchy on some Polish (respectively, quasi-Polish) space is (very)

bad.

(5) If F ⊇ Bω (hence, in particular, if F = Dα for some α ≥ ω) then the F-hierarchy

on X is isomorphic to the F-hierarchy on N . Hence the (B,F)-hierarchy on X is

very good, and assuming AD the F-hierarchy on X is very good as well. In fact, if
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e.g. F = Dα for some α ≥ ω, then the F-hierarchy on X is isomorphic to the Wadge

hierarchy on N .

Analogous results hold for k-partitions of X (for every k ∈ ω) when replacing “very

good” by “good” in all the statements above.

Proof. Let us first consider the first item of the list. Without loss of generality we can

assume that X is a closed subset of N by (Kechris 1995, Theorem 7.8), and hence that

X is a (W-)retract of N by (Kechris 1995, Theorem 7.3). Hence the claim follows from

Proposition 5.4 and the results from (Wadge 1984).

The other claims of the list follow from Proposition 5.2 and, respectively, Lemma 4.19

and the fact that every zero-dimensional quasi-Polish space is Polish (see the proof of

Theorem 4.21), Theorem 4.21(1), Proposition 4.28 and Corollary 5.6, and Proposition 4.3,

together with the results from (Motto Ros 2009; Motto Ros 2010a).

The results about k-partitions can be obtained in a similar way using Corollary 5.10.

Theorem 5.12 leaves open the problem of determining the F-hierarchy on X for many

reducibilities F , most notably for F = D1 = W and F = D2 on quasi-Polish spaces X of

dimension 6=∞, and for F = Dn, 1 ≤ n ∈ ω, for quasi-Polish spaces of dimension ∞: in

the rest of this subsection we will give some partial answers to this problem.

Let us first consider the D1- and D2-hierarchies on uncountable Polish spaces. The case

of the D1-hierarchies is now quite well-understood. For example, we have the following

results.

Theorem 5.13. (Hertling 1996) The D1-hierarchy on Rn and [0, 1]n (for 1 ≤ n ≤ ω) is

very bad.

Theorem 5.14. (Ikegami 2010; Ikegami et al. 2012) Let X = Rn for 1 ≤ n ≤ ω.

(1) Any countable partial order can be embedded into the D1-hierarchy on X.

(2) (ZFC) Any partial order of size ω1 can be embedded into the D1-hierarchy on X.

Notice that by Proposition 5.4 these results hold also for Polish spaces admitting a

continuous retraction to Rn, like e.g. [0, 1]n.

Theorem 5.15. (Schlicht 2012) Suppose X is a metric space with dim(X) 6= 0: then

the D1-hierarchy on X is bad. In fact it contains uncountable antichains.

Notice that Theorem 5.15 cannot be improved by replacing bad with very bad, as

by (Cook 1967, Theorem 11) there is an uncountable connected compact Polish space X

with the property that all continuous maps f : X → X are either constant or the identity

map; this implies that all nonempty subsets A 6= X are Wadge incomparable, and hence

that the Wadge hierarchy on X is bad but not very bad. Moreover, we cannot require

X to be just quasi-Polish: for example, the Wadge hierarchy on the perfect ω-algebraic

domain Lω+1 from Example 4.14(3), which has dimension ω, is good (but not very good),

hence it does not contain infinite antichains.

Let us now consider the D2-hierarchy on locally connected Polish spaces. Notice that for

any f ∈ D2(X,Y ) between Polish spaces X,Y there is a nonempty open set U ⊆ X such
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that the restriction of f to the closure cl(U) of U is continuous. In fact, the Jayne-Rogers

theorem D2(X,Y ) = DW
2 (X,Y ) implies that for such an f there is a closed covering 〈Xk |

k ∈ ω〉 of X such that f � Xk is continuous for each k ∈ ω. By Baire’s category theorem

there is k ∈ ω such that Xk is not meager, hence U ⊆ Xk for some nonempty open set

U . Since Xk is closed, it follows that cl(U) ⊆ Xk, and hence f � cl(U) = (f � Xk) � cl(U)

is continuous.

Proposition 5.16. Suppose X is an uncountable locally connected Polish space. Then

the (B,D2)-hierarchy on X is not very good.

Proof. We will find Borel sets A,B ⊆ X such that {A,A,B,B} is an antichain with

respect to D2(X)-reducibility. Since X is uncountable, there is a compact set Y ⊆ X

with Y '1 C by (Kechris 1995, Theorem 13.6). Let A be a proper Σ0
2(X) set such that

both A and A are dense in X, and let B ⊆ Y be a proper Σ0
3(Y ) (so that, in particular,

B is also a proper Σ0
3(X) set). By their topological complexity (and the fact that all

the pointclasses Σ0
2(X),Π0

2(X),Σ0
3(X),Π0

3(X) are closed under D2-preimages), we have

that the pairs (A,A) and (B,B) are D2-incomparable, and that B,B �D2 A,A. Hence

it remains to show that A,A 6≤D2
B,B. In fact, since D0 ≤D2

D1 ⇐⇒ D0 ≤D2
D1

for every D0, D1 ⊆ X, it suffices to show that C �D2 B for every C ∈ {A,A}. Suppose

toward a contradiction that there is a reduction f ∈ D2(X) of C to B. Then by the

observation preceding this proposition, there is a nonempty open connected set U ⊆ X

such that f � U is continuous. Since C ∩U is dense in U , its image f(C ∩U) is also dense

in f(U). This implies f(U) ⊆ Y , since f(C ∩ U) ⊆ B ⊆ Y and Y is closed. Since f(U)

is connected and Y is totally disconnected, f � U is constant. But this contradicts our

assumption that C = f−1(B) because both C and C are dense and hence have nonempty

intersection with U .

Using Corollary 5.5, we have also the following result.

Corollary 5.17. Suppose that X is quasi-Polish and that there is Y ∈∆0
2(X) which is

an uncountable locally connected Polish space. Then the (B,D2)-hierarchy on X is not

very good.

We will now turn our attention to Euclidean spaces and show that their (B,D2)-

hierarchy is in fact bad. In what follows, we will crucially use two simple properties of

the real line R, namely the fact that, since R is connected, every continuous function

f : R → R maps intervals to (possibly degenerate) intervals, and the fact that R is σ-

compact. Recall that in an arbitrary Polish space X the image of a closed subset of X

under a continuous reduction can be analytic non-Borel: however, if X is σ-compact the

situation becomes considerably simpler, as it is shown by the next lemma.

Lemma 5.18. Let 2 ≤ α < ω1. Suppose X and Y are Polish spaces, f : X → Y is

surjective, and A ⊆ Y .

(1) (Saint Raymond 1976, Theorem 5) If X is compact, f is continuous, and f−1(A) ∈
Σ0
α(X), then A ∈ Σ0

α(Y ).

(2) If X is σ-compact, f ∈ D2(X,Y ), and f−1(A) ∈ Σ0
α(X), then A ∈ Σ0

α(Y ).
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Proof. The first part is proved in (Saint Raymond 1976). For the second part, if X is

σ-compact then by the Jayne-Rogers theorem D2(X,Y ) = DW
2 (X,Y ) there is a countable

covering 〈Xk | k ∈ ω〉 of X consisting of compact sets such that f � Xk is continuous for

each k ∈ ω. Since (f � Xk)−1(A∩f(Xk)) = f−1(A)∩Xk ∈ Σ0
α(X), the first part applied

to f � Xk : Xk → f(Xk) implies that A ∩ f(Xk) ∈ Σ0
α(f(Xk)) ⊆ Σ0

α(Y ) (because f(Xk)

is compact, and hence closed in Y ). Hence A =
⋃
k∈ω(A ∩ f(Xk)) ∈ Σ0

α(Y ).

To construct antichains in the (B,D2)-hierarchies of a Polish spaces X, we will consider

sets which are everywhere proper Σ0
α(X) for some 1 < α < ω1.

Lemma 5.19. Suppose X is a perfect Polish space and 1 < α < ω1. Then there is

A ∈ Σ0
α(X) such that for all nonempty open sets U ⊆ X, A ∩ U ∈ Σ0

α(X) \Π0
α(X).

Proof. Let d be a compatible metric for X. We first construct a sequence 〈Cn | n ∈
ω〉 of disjoint nowhere dense closed subsets of X with limn→∞ diam(Cn) = 0 (where

the operator diam refers to the chosen metric d) and such that
⋃
n∈ω Cn is dense. Let

〈Bn | n ∈ ω〉 be an enumeration of a basis for the topology of X. Observe that for every

nonempty open set U ⊆ X there is a homeomorphic copy C ⊆ U of C which is nowhere

dense (in X), and that C is necessarily closed since C is compact and X is Hausdorff. By

induction on n ∈ ω, choose (using DC) a closed nowhere dense Cn ⊆ B′n = Bn \
⋃
i<n Ci

such that diam(Cn) ≤ 2−n: such a Cn exists by the observation above since, by the

inductive hypothesis applied to the Ci’s, B
′
n is a nonempty open set, and if necessary

B′n can obviously be further shrunk to a nonempty open set of diameter ≤ 2−n. It is

straightforward to check that the sequence of the Cn’s constructed in this way has the

desired properties.

Now choose sets An ∈ Σ0
α(Cn)\Π0

α(Cn) (using DC again). We claim that A =
⋃
n∈ω An

is as required. First notice that each An ∈ Σ0
α(X) since α ≥ 2 and Cn is closed, hence

A ∈ Σ0
α(X) as well. Now assume towards a contradiction that there is an open U ⊆ X

such that A ∩ U ∈ Π0
α(X). Let x ∈ X and 0 < ε ∈ R+ be such that Bd(x, ε) ⊆ U . Let

N ∈ ω be such that diam(Cn) < ε
2 for every n ≥ N . Since each Cn was assumed nowhere

dense, V = Bd(x,
ε
2 ) \

⋃
n<N Cn is a nonempty open set. By density of

⋃
n∈ω Cn and the

definition of V , there is n ≥ N such that Cn∩V 6= ∅. Hence, by the choice of N and V we

have Cn ⊆ U . By the assumption A∩U ∈ Π0
α(X), An = A∩Cn = (A∩U)∩Cn ∈ Π0

α(Cn),

contradicting the choice of the An’s.

Proposition 5.20. There are uncountable antichains in the D2-hierarchy on [0, 1].

Proof. Let Wα ⊆ C denote the set of codes of well-orders on ω of order type at most

α. Let W =
⋃
α<ω1

Wα. Since each Wα is Borel and W is Π1
1-complete, the Borel ranks

of the sets Wα are unbounded in ω1. Hence we obtain an unbounded set C ⊆ ω1 and

a collection (Aα)α∈C of subsets of C such that Aα is Σ0
α(C)-complete. It follows from

the previous Lemma (using DC) that there is a collection (Aα)α∈C of Borel subsets of

[0, 1] such that Aα ∩ (a, b) is a proper Σ0
α([0, 1]) set for all nondegenerate open intervals

(a, b) ⊆ [0, 1].

Suppose α, β ∈ C and 1 < α < β. Then Aβ �D2
Aα because the pointclass Σ0

α(X) is

closed under D2-preimages. Conversely, assume towards a contradiction that there is a
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reduction f ∈ D2([0, 1]) of Aα to Aβ . Let [a, b] be a nondegenerate closed interval such

that f � [a, b] is continuous (which exists by the observation preceding Proposition 5.16).

Then there is an interval [c, d] with f([a, b]) = [c, d], and since f � [a, b] cannot be constant

(as otherwise either Aα ∩ [a, b] = [a, b] or Aα ∩ [a, b] = ∅, contradicting the choice of the

Aα’s), [c, d] is nondegenerate. Since (f � [a, b])−1[Aβ ∩ [c, d]] = Aα ∩ [a, b] ∈ Σ0
α([0, 1])

and Aβ ∩ [c, d] /∈ Σ0
α([0, 1]) ⊆ Π0

β([0, 1]), this contradicts Lemma 5.18.

Corollary 5.21.

(1) Suppose X is an Hausdorff quasi-Polish space with [0, 1] ⊆ X. Then there are un-

countable antichains in the D2-hierarchy on X.

(2) The D2-hierarchy on Rn and [0, 1]n (for 1 ≤ n ≤ ω) is bad.

Proof. This follows from the fact that a compact subset of an Hausdorff quasi-Polish

space is closed and from Corollary 5.5.

Corollary 5.21 leaves open the following problem:

Question 5.22. Is the D2-hierarchy on R very bad?

We do not know the answer to the above question, but we are at least able to show

that the (B,D2)-hierarchy on R2 (and hence, since R2 is σ-compact, on any Hausdorff

quasi-Polish space containing R2, like the spaces [0, 1]n and Rn for 2 ≤ n ≤ ω) is very

bad. Unfortunately, our argument cannot be adapted to R.

Theorem 5.23. The quasi-order (P(ω),⊆∗) of inclusion modulo finite sets on P(ω)

embeds into (Σ0
2(R2),≤D2

).

Before proving Theorem 5.23, we present some constructions and prove some technical

lemmas which will be needed later. Call a map f : R → R weakly increasing if a ≤ b

implies f(a) ≤ f(b) for all a, b ∈ R. Let {Ax | x ⊆ ω} be a collection of Σ0
2 subsets of

[0, 1] with the following properties:

(A1) inf(Ax) = 0, sup(Ax) = 1, and both Ax ∩ (0, 1) and Ax ∩ (0, 1) are nonempty;

(A2) x ⊆∗ y if and only if Ax ≤R
D1
Ay;

(A3) If x ⊆∗ y, then there is a weakly increasing uniformly continuous surjective reduction

f : R→ R of Ax to Ay with f(0) = 0 and f(1) = 1.

Such a collection exists by (Ikegami et al. 2012).

Definition 5.24. A map h : R2 → R2 is called special if it is uniformly continuous,

surjective, and such that for every a, a′, b, b′ ∈ R

(S1) if a = a′ then π0(h(a, b)) = π0(h(a′, b′)),

(S2) a ≤ a′ ⇐⇒ π0(h(a, b)) ≤ π0(h(a′, b′)), and

(S3) if b ≤ b′ then π1(h(a, b)) ≤ π1(h(a, b′)).

For a ∈ R, let Ra denote {a} × R. Notice that for every map h : R2 → R2 satisfying

(S1) and (S2) there is an order-preserving (hence injective) map π(h) : R→ R such that

h(Ra) ⊆ Rπ(h)(a).
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Let 〈βn | n ∈ ω〉 be a decreasing sequence of reals with limn→∞ βn = 0 and β0 <
1
12 .

Let {qn | n ∈ ω} be an enumeration without repetitions of Q, and let {pn | n ∈ ω}
be a collection in Q such that {(qn, pn) ∈ Q2 | n ∈ ω} is dense in R2. For x ⊆ ω and

n ∈ ω, let Bx,n ⊆ R be an affine image of Ax (with the same orientation as Ax) such that

inf(Bx,n) = pn and sup(Bx,n) = pn + βn. Let I be a countable dense subset of R \Q (so

that R \ (Q ∪ I) is dense in R as well), and let {ik | k ∈ ω} be an enumeration without

repetitions of I. Finally, define

Cx = (I × R) ∪
⋃
n∈ω

({qn} ×Bx,n) ⊆ R2. (∗)

Thus Cx ∩Ra is empty if a ∈ R \ (I ∪Q), equals Ra if a ∈ I, and is an affine copy of Ax
if a ∈ Q.

In what follows we will tacitly assume that every partial function f : R2 → R2 is such

that dom(f) = Df×R and range(f) = Rf×R for some (possibly empty) Df , Rf ⊆ R, and

moreover that it satisfies (S1)–(S3) when restricted to a, a′ ∈ Df . Note that necessarily

Df and Rf have the same cardinality. Given such an f , we set fa : R→ R : b 7→ π1(f(a, b))

for every a ∈ Df .

Given a partial function f : R2 → R2 with finite Df , we define a canonical extension

f̄ : R2 → R2 of f as follows. If Df = ∅, let f̄ = idR2 . Suppose now that Df = {a0, . . . , an}
with a0 < a1 < . . . < an (for some n < ω), and pick (a, b) ∈ R2. Then we set set

f̄(a, b) = (a, fa0(b)) if a < a0, f̄(a, b) = (a, fan(b)) if a > an, and

f̄(a, b) =
am+1 − a
am+1 − am

· f(am, b) +
a− am

am+1 − am
· f(am+1, b) (†)

if am < a < am+1 for some m < n, where + and · denote the usual operations of

vector addition and multiplication by a scalar on R2; in other words, f̄(a, b) is the linear

combination of f(am, b) and f(am+1, b).

Let d denote the usual Euclidean distance on R2, and for f, g : R2 → R2 write

‖f − g‖ = sup{d(f(a, b), g(a, b)) | a, b ∈ R}.

Definition 5.25. Given a (partial) function f : Df × R→ Rf × R, we say that (δ, ε) ∈
(R+)2 is a modulus (of uniform continuity) for f if

∀a ∈ Df ∀b, b′ ∈ R (|b− b′| < δ ⇒ d(f(a, b), f(a, b′)) < ε).

Notice that in fact d(f(a, b), f(a, b′)) = |fa(b)− fa(b′)| by our assumptions on f , and

that if (δ, ε) is a modulus for a partial function f : Df ×R→ Rf ×R with finite Df , then

(δ, ε) is also a modulus for f̄ .

Definition 5.26. We let Y be the the class of all partial functions f : Df ×R→ Rf ×R
such that

(Y1) Df is finite;

(Y2) f satisfies (S1)–(S3) restricted to a, a′ ∈ Df ;

(Y3) f is uniformly continuous (by (Y1) this is equivalent to require that fa is uniformly

continuous for every a ∈ Df );

(Y4) there is K ∈ ω such that |fa(b)− fa′(b)| < K for every a, a′ ∈ Df and b ∈ R;
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(Y5) f is a partial reduction of Cx to Cy, i.e. for every a ∈ Df and every b ∈ R,

(a, b) ∈ Cx ⇐⇒ f(a, b) ∈ Cy.

Lemma 5.27. For every f ∈ Y, f̄ is special.

Proof. All the computations in the proof rely on the very specific definition (†) of

f̄ . It is not hard to check that f̄ is surjective since range(f) = Rf × R, and that f̄

satisfies (S1)–(S3) by (Y2), so that π(f̄) is well-defined. It remains to check that f̄ is

uniformly continuous. Fix K ∈ ω as in (Y4), and notice that from this property we get

|f̄a(b)− f̄a′(b)| < K
ρ · |a− a

′| for every a, a′, b ∈ R, where ρ = min{|a− a′| | a, a′ ∈ Df}.
Given ε > 0, let δ′ be such that (δ′, ε2 ) is a modulus for f (such a δ′ exists by (Y3)), and

δ′′ be such that K
ρ · |a−a

′| < ε
4 and |π(f̄)(a)−π(f̄)(a′)| < ε

4 whenever |a−a′| < δ′′ (such

a δ′′ exists by (Y1)). Finally, let δ = min{δ′, δ′′}. Fix (a, b) ∈ R2, and let (a′, b′) ∈ R2 be

such that d((a, b), (a′, b′)) < δ, so that in particular |a− a′| < δ′′ and |b− b′| < δ′. Since

(δ′, ε2 ) is a modulus for f̄ as well, we have that

d(f̄(a, b), f̄(a′, b′)) ≤ d(f̄(a, b), f̄(a′, b)) + d(f̄(a′, b), f̄(a′, b′))

≤ (|π(f̄)(a)− π(f̄)(a′)|+ |f̄a(b)− f̄a′(b)|) + |f̄a′(b)− f̄a′(b′)| <
(ε

4
+
ε

4

)
+
ε

2
= ε.

Therefore f̄ is uniformly continuous, and hence special.

Lemma 5.28. Suppose that f ∈ Y and that (δ, ε) and (δ′, ε′) are moduli for f . Let

{ki | i < M} ⊆ ω and {lj | j < N} ⊆ ω be such that ki ≤ ki′ for i ≤ i′ < M , and assume

that βk0 < min{δ, ε, ε′}. Then there is an extension g ∈ Y of f such that

(1) {qki , ilj | i < M, j < N} ⊆ Dg ∩Rg;
(2) (δ′, 3ε′) is a modulus for g;

(3) ‖f̄ − ḡ‖ ≤ 2ε.

Proof. We will define g through some intermediate extensions f ⊆ g′ ⊆ g′′ ⊆ g′′′ ⊆ g.

Let

H = {qki , π(f̄)(qki), π(f̄)−1(qki), ilj , π(f̄)(ilj ), π(f̄)−1(ilj ) | i < M, j < N},

and let θ = 1
2 min{d(a, a′) : a, a′ ∈ H, a 6= a′}.

First we extend f to a partial function g′ in such a way that Dg′ = Df ∪{qki | i < M}.
Fix i < M : if f̄ � Rqki is already a partial reduction of Cx to Cy, we let g′ � Rqki =

f̄ � Rqki . Otherwise, to simplify the notation let β = βki , a0 = pki = inf(Bx,ki), and

a1 = pki + βki = sup(Bx,ki). Let l ∈ ω be such that

- ql ≤ π(f̄)(qki),

- |π(f̄)(qki)− ql| < min{ε, θ},
- βl < ε′, and

- f̄qki (a0) < pl < pl + βl < f̄qki (a1).

Notice that such an l exists by the choice of the βn’s and the pn’s. Then we define g′ � Rqki
from Rqki onto Rql as follows. First we “translate” the values of f̄qi preceding a0 and

following a1 by suitable fixed constants so that g′qki
(a0) = pl and g′qki

(a1) = pl + βl.

More precisely, let u0 = pl − f̄qki (a0) and u1 = pl + βl − f̄qki (a1), and set g′(qki , b) =
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(ql, f̄qki (b) + u0) for b ≤ a0, and g′(qki , b) = (ql, f̄qki (b) + u1) for b ≥ a1. Finally, we

extend g′ to the whole Rqki by mapping {qki} × [a0, a1] onto {ql} × [pl, pl + βl] by a

uniformly continuous partial reduction of Cx to Cy which is weakly increasing in the

second coordinate and maps a0 to pl and a1 to pl + βl (this is possible by (A3)).

By construction, g′ is well-defined and satisfies (Y1)–(Y3) and (Y5) (for (Y2) notice

that g′ still satisfies (S2) by the condition |π(f̄)(qki) − ql| < θ, while for (Y3) use the

fact that g′ � (−∞, a0], g′ � [a0, a1] and g′ � [a1,+∞) are all uniformly continuous).

We now check that (δ′, 3ε′) is a modulus for g′. Obviously, it is enough to consider

a ∈ Dg′ \ Df , i.e. a = qki for some i < M . Let b < b′ be such that |b′ − b| < δ′. First

assume that b, b′ ≤ a0. Then d(g′(qki , b), g
′(qki , b

′)) = |f̄qki (b
′) + u0 − (f̄qki (b) + u0)| =

d(f̄(qki , b), f̄(qki , b
′)) < ε′ since (δ′, ε′) is a modulus for f (and hence also for f̄). The case

b, b′ ≥ a1 is treated in a similar way and gives that d(g′(qki , b), g
′(qki , b

′)) < ε′ again.

If b ≤ a0 ≤ b′ ≤ a1 then |a0 − b| < δ′: by the previous computation, it follows that

d(g′(qki , b), g
′(qki , b

′)) ≤ d(g′(qki , b), g
′(qki , a0)) + d(g′(qki , a0), g′(qki , b

′)) = |g′qki (b) −
g′qki

(a0)| + |g′qki (a0) − g′qki (b
′)| < ε′ + ε′ = 2ε′ since, by construction, pl = g′qki

(a0) ≤
g′qki

(b′) ≤ pl + βl and βl < ε′. The case a0 ≤ b ≤ a1 ≤ b′ is treated similarly, so let us

consider the case b ≤ a0 ≤ a1 ≤ b′. Since in this case |a0 − b| < δ′ and |b′ − a1| < δ′,

by the previous computations we get d(g′(qki , b), g
′(qki , b

′)) ≤ d(g′(qki , b), g
′(qki , a0)) +

d(g′(qki , a0), g′(qki , a1)) + d(g′(qki , a1), g′(qki , b
′)) < 3ε′ since d(g′(qki , a0), g′(qki , a1)) =

|g′qki (a0)− g′qki (a1)| = |pl + βl− pl| = βl < ε′. Finally, the case a0 ≤ b ≤ b′ ≤ a1 is trivial

since in this situation we have d(g′(qki , b), g
′(qki , b

′)) ≤ d(g′(qki , a0), g′(qki , a1)) = βl < ε′.

Hence (δ′, 3ε′) is a modulus for g′, as required.

Finally, we check that sup{d(f̄(a, b), g′(a, b)) | a ∈ Dg′ , b ∈ R} ≤ 2ε. It is obviously

enough to consider the case a = qki and show that d(f̄(qki , b), g
′(qki , b)) < 2ε for every

b ∈ R. Since βki ≤ βk0 < δ it follows that |f̄qki (a1)− f̄qki (a0)| = d(f̄(qki , a0), f̄(qki , a1)) <

ε (because (δ, ε) is a modulus for f̄), therefore u0, u1 < ε by the choice of l. This implies

that d(f̄(qki , b), g
′(qki , b)) ≤ |π(f̄)(qki) − ql| + |f̄qki (b) − g′qki

(b)| < 2ε for b ≤ a0 or

b ≥ a1. If instead a0 ≤ b ≤ a1, notice that both f̄qki (b) and g′qki
(b) belong to the interval

[f̄qki (a0), f̄qki (a1)], whence d(f̄(qki , b), g
′(qki , b)) ≤ |π(f̄)(qki)−ql|+|f̄qki (a1)−f̄qki (a0)| <

2ε.

We now extend g′ to g′′ in such a way that Dg′′ = Dg′ ∪ {ilj | j < N}. Fix j < n.

If π(f̄)(ilj ) ∈ I, then f̄ � Rilj is already a partial reduction of Cx to Cy and we define

g′′ � Rilj = f̄ � Rilj . Otherwise, we choose l ∈ ω such that

- il < π(f̄)(ilj ) and

- |π(f̄)(ilj )− il| < min{ε, θ},
and define g′′(ilj , b) = (il, f̄ilj (b)) for every b ∈ R. Then g′′ satisfies (Y1)–(Y3) and (Y5)

(for (Y2) use |π(f̄)(ilj )− il| < θ), (δ′, 3ε′) is a modulus for g′′ (since it is a modulus for

g′ and (δ′, ε′) is a modulus for f̄) and sup{d(f̄(a, b), g′′(a, b)) | a ∈ Dg′′ , b ∈ R} ≤ 2ε by

the analogous property for g′ and |π(f̄)(ilj )− il| < ε.

We then extend g′′ to g′′′ in such a way that Rg′′′ = Rg′′ ∪ {qki | i < M}. Fix i < M

and let r = π(f̄)−1(qki) (such an r exists because f̄ , and hence π(f̄), is surjective). If

f̄ � Rr is already a partial reduction of Cx to Cy, we let g′′′ � Rr = f̄ � Rr. Otherwise, to
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simplify the notation let β = βki , b0 = pki = inf(Bx,ki), and b1 = pki +βki = sup(Bx,ki).

Let l ∈ ω be such that

- ql ≤ r,
- |r − ql| < θ,

- d(f̄(ql, b), f̄(r, b)) < ε for all b ∈ R, and

- π1(f̄−1(qki , b0)) < pl < pl + βl < π1(f̄−1(qki , b1)).

Notice that the third requirement is possible since f̄ is uniformly continuous. Then we

define g′′′ � Rql from Rql onto Rqki similarly to the case of g′ � Rqki . More precisely, let

u0 = b0 − f̄r(pl) and u1 = b1 − f̄r(pl + βl), and set g(ql, b) = (qki , f̄r(b) + u0) for b ≤ pl
and g(ql, b) = (qki , f̄r(b) + u1) for b ≥ pl + βl. Finally, we extend g′′′ to the entire Rl
by mapping {ql} × [pl, pl + βl] onto {qki} × [b0, b1] via a uniformly continuous partial

reduction of Cx onto Cy which is weakly increasing in the second coordinate and maps

pl to b0 and pl + βl to b1 (this is possible by (A3)).

Arguing as for g′, it is not hard to check that g′′′ satisfies (Y1)–(Y3) and (Y5), and

that (δ′, 3ε′) is a modulus for g′′′ since it is a modulus for g′′ and |b1 − b0| = βki ≤
βk0 < ε′. Finally, we check that sup{d(f̄(a, b), g′′′(a, b)) | a ∈ Dg′′′ , b ∈ R} ≤ 2ε. Since

the analogous property for g′′ holds, it is enough to check that given i < M and l ∈ ω as

above, d(f̄(ql, b), g
′′′(ql, b)) < 2ε for every b ∈ R. First notice that d(f̄(ql, b), g

′′′(ql, b)) ≤
d(f̄(ql, b), f̄(r, b)) + d(f̄(r, b), g′′′(ql, b)): since d(f̄(ql, b), f̄(r, b)) < ε by the third property

above, it is enough to check that d(f̄(r, b), g′′′(ql, b)) = |f̄r(b)−g′′′ql (b)| < ε. Since |b1−b0| =
βki ≤ βk0 < ε, we get u0, u1 < ε, whence |f̄r(b)− g′′′ql (b)| < ε for b ≤ pl and b ≥ pl +βl. If

instead pl ≤ b ≤ pl + βl we have that both f̄r(b) and g′′′ql (b) belong to the interval [b0, b1]

which has length βki ≤ βk0 < ε, whence |f̄r(b)− g′′′ql (b)| < ε again.

Finally, we extend g′′′ to g in such a way that Rg = Rg′′′ ∪ {ilj | j < N}. Let

r = π(f̄)−1(ilj ). If r ∈ I, then f̄ � Rr is already a partial reduction of Cx to Cy and we

simply define g � Rr = f̄ � Rr. Otherwise, we choose l ∈ ω with

- il ≤ r,
- d(il, r) < θ, and

- d(f̄(il, b), f̄(r, b) < ε for all b ∈ R .

As for the definition of g′′′, the last requirement is possible by the uniform continuity of

f̄ . Then we define g(il, b) = (ilj , f̄r(b)) for all b ∈ R. As for the previous steps, g satisfies

(Y1)–(Y3) and (Y5), and (δ′, 3ε′) is a modulus for g since it is a modulus for g′′′ and

(δ′, ε′) is a modulus for f̄ . Finally,

sup{d(f̄(a, b), g(a, b)) | a ∈ Dg, b ∈ R} ≤ 2ε (‡)

by the last requirement in the definition of l ∈ ω and since the analogous property holds

for g′′′. A straightforward computation shows that (‡) implies ‖f̄ − ḡ‖ ≤ 2ε by (†),
therefore g satisfies (1)–(3). Hence it remains to check that g ∈ Y. Let K ∈ ω be a

witness of the fact that f satisfies (Y4). As already observed, this implies that |f̄a(b) −
f̄a′(b)| < K

ρ · |a − a
′| for every a, a′, b ∈ R, where ρ = min{|a − a′| | a, a′ ∈ Df}. Let
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K ′ = K
ρ ·max{|a− a′| | a, a′ ∈ Dg}. Then for every a, a′ ∈ Dg and b ∈ R we have

|ga(b)− ga′(b)| ≤ |ga(b)− f̄a(b)|+ |f̄a(b)− f̄a′(b)|+ |f̄a′(b)− ga′(b)|
≤ d(g(a, b), f̄(a, b)) +K ′ + g(f̄(a′, b), g(a′, b)) ≤ 2ε+K ′ + 2ε = K ′ + 4ε

by (3). This shows that K ′ + 4ε witnesses that g satisfies (Y4), and hence g ∈ Y by

Definition 5.26, as required.

Proof of Theorem 5.23 We will show that the map P(ω) → P(R2) : x 7→ Cx, where

Cx is defined as in (∗), is the desired embedding.

Assume first that x ⊆∗ y: we claim that Cx ≤D1
Cy (hence, in particular, Cx ≤D2

Cy).

In fact, we will construct a continuous reduction of Cx to Cy as a uniform limit of a

sequence of special maps 〈f̄n | fn ∈ Y, n ∈ ω〉 with the property that for every k ∈ ω
there is Nk ∈ ω such that:

(1) f̄Nk � Rqk = f̄n � Rqk and f̄Nk � Rik = f̄n � Rik for every n ≥ Nk (so that, in

particular, π(f̄Nk)(qk) = π(f̄n)(qk) and π(f̄Nk)(ik) = π(f̄n)(ik));

(2) f̄Nk � Rqk is a partial reduction of Cx to Cy: in particular, π(f̄Nk)(qk) ∈ Q by property

(A1);

(3) π(f̄Nk)(ik) ∈ I;

(4) for every l ∈ ω there is m ∈ ω such that π(f̄Nm)(qm) = ql;

(5) for every l ∈ ω there is m ∈ ω such that π(f̄Nm)(im) = il.

Assume that such a sequence exists, and let f̄ = limn→∞ f̄n, so that, in particular, f̄

is continuous because the f̄n’s are continuous and are assumed to converge uniformly:

then f̄ witnesses Cx ≤D1
Cy. In fact, let (a, b) ∈ R2. If a = qk or a = ik for some k ∈ ω,

then f̄(a, b) = f̄Nk(a, b) by (1), and hence (a, b) ∈ Cx ⇐⇒ f̄(a, b) ∈ Cy by, respectively,

(2) and (3) (depending on whether a ∈ Q or a ∈ I). It remains to consider the case

a ∈ R \ (Q ∪ I). Notice that since f̄ is the limit of a sequence of special maps, f̄ still

satisfies (S1) and (S2), hence π(f̄) : R → R is a well-defined injective map. By (4), (5)

and (1), Q∪ I ⊆ π(f̄)(Q∪ I) (in fact, Q∪ I = π(f̄)(Q∪ I) by (2) and (3)). By injectivity

of π(f̄), this implies π(f̄)(a) ∈ R\(Q∪I), whence (a, b) ∈ Cx ⇐⇒ f̄(a, b) ∈ Cy because,

by construction, (a, b) /∈ Cx and f̄(a, b) /∈ Cy.

It remains to show that the above sequence of maps exists: the sequence 〈f̄n | fn ∈
Y, n ∈ ω〉 will be defined recursively using a back-and-forth construction. Towards this

aim, we will also define an auxiliary sequence 〈δn | n ∈ ω〉 of positive real numbers, and

require that

(i) fn+1 extends fn;

(ii) qm ∈ Dfn ∩Rfn for all m with βm ≥ min{δn, 1
3·2n+2 },

(iii) im ∈ Dfn ∩Rfn for all m < n,

(iv) (δn,
1

2n+1 ) is a modulus for fn, and

(v) ‖f̄n+1 − f̄n‖ ≤ 1
2n .

Set f0 = ∅ and δ0 = 1. Notice that f0 fulfills all the requirements since β0 <
1
12 . To

define fn+1, we first choose δn+1 such that (δn+1,
1

3·2n+2 ) is a modulus for f̄n: this is

possible since f̄n is uniformly continuous by Lemma 5.27. Next we extend fn to fn+1 by

applying Lemma 5.28 with f = fn, δ = δn, ε = 1
2n+1 , δ′ = δn+1, and ε′ = 1

3·2n+2 in such
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a way that setting fn+1 = g we get a function which fulfills (ii) and (iii). More precisely,

we let {ki | i < M} be an increasing enumeration of those m ∈ ω such that

min

{
δn+1,

1

3 · 2n+3

}
≤ βm < min

{
δn,

1

3 · 2n+2

}
,

and set N = 1 and l0 = n. Notice that Lemma 5.28 can be applied with these parameters

because βk0 < min{δn, 1
3·2n+2 } = min{δ, ε, ε′}, and that the resulting fn+1 = g satisfies

(ii) and (iii) because of the choice of the ki’s and l0, together with the fact that fn
satisfies such conditions by inductive hypothesis. Then (δn+1,

1
2n+2 ) is a modulus for

fn+1 by Lemma 5.28(ii), and ‖f̄n+1 − f̄n‖ ≤ 1
2n by Lemma 5.28(iii), hence fn+1 satisfies

also (iv) and (v). This completes the recursive definition. It is immediate to check that

conditions (1)–(5) are satisfied by construction. Moreover, using standard arguments one

can easily show that (v) implies that the sequence 〈f̄n | n ∈ ω〉 uniformly converges to

some f̄ : R2 → R2, hence we are done.

To complete the proof of Theorem 5.23, it remains to show that if Cx ≤D2
Cy then

x ⊆∗ y. Suppose that f witnesses Cx ≤D2 Cy. Then there is a nonempty open set U ⊆ R2

such that f � U is continuous by the observation preceding Proposition 5.16. We may

assume that U is an open rectangle. Fix a ∈ I. If b < b′ are such that (a, b), (a, b′) ∈ U ,

then {a}×[b, b′] ⊆ Cx∩U is homeomorphic to [0, 1] ⊆ R, hence f({a}×[b, b′]) is a (possibly

degenerate) path totally contained in Cy (since f � U is continuous and f reduces Cx to

Cy). By construction of Cy and the choice of I, this implies that f({a}×[b, b′]) is contained

in a single vertical line, so that in particular π0(f(a, b)) = π0(f(a, b′)). We have thus

shown that for every a ∈ I, f(Ra∩U) ⊆ Rd for some d ∈ R. It follows that the same holds

also for an arbitrary a ∈ R, i.e. that π0(f(a, b)) = π0(f(a, b′)) for every (a, b), (a, b′) ∈ U ,

because otherwise, by continuity of f � U , we would have π0(f(a′, b)) 6= π0(f(a′, b′)) for

some a′ ∈ I sufficiently close to a. Now notice that by the choice of the pn’s and the

βn’s there is an index n ∈ ω with {qn} × [pn, pn + βn] ⊆ U . Let s ∈ R be such that

f(Rqn ∩ U) ⊆ Rs. Since f is a reduction of Cx to Cy and Cx ∩ Rqn = {qn} × Bx,n ⊆ U

is neither empty nor the entire Rqn ∩ U by (A1), s = qm for some m ∈ ω. Therefore,

Cy ∩Rqm = {qm}×By,m. Let ε > 0 be such that {qn}× [pn − ε, pn + βn + ε] ⊆ U . Then

the map g : R → R defined by g(x) = f(pn − ε) if x ≤ pn − ε, g(x) = f(pn + βn + ε) if

x ≥ pn + βn + ε, and g(x) = f(x) if pn − ε ≤ x ≤ pn + βn + ε is a continuous reduction

of Bx,n to By,m. Since Bx,n is an affine image of Ax and By,m is an affine image of Ay,

it follows that Ax ≤R
D1
Ay, and hence x ⊆∗ y by (A2).

Corollary 5.29. Suppose that X is an Hausdorff quasi-Polish space such that either

R2 ⊆ X (in particular, we can take e.g. X = Rn or X = [0, 1]n for 2 ≤ n < ω), or X is

an n-dimensional σ-compact Polish space which is embeddable into Rn (for some n ≥ 2),

or X is locally Euclidean and of dimension n ≥ 2.

(1) Any countable partial order embeds into the (B,D2)-hierarchy on X.

(2) (ZFC) Any partial order of size ω1 embeds into the (B,D2)-hierarchy on X.

(3) The (B,D2)-hierarchy on X is very bad.
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Proof. First we consider the case X = R2. Assuming the axiom of choice, every partial

order of size ω1 embeds into (P(ω),⊆∗) by Parovičenko’s Theorem (Parovičenko 1963).

The embedding of countable partial orders is constructed by diagonalizing over finitely

many subsets of ω in each step, hence AC is not necessary. In particular, (P(ω),⊆∗)
contains infinite antichains and infinite decreasing sequences. Hence the result follows

from Theorem 5.23.

Now consider the case of an Hausdorff quasi-Polish space X such that R2 ⊆ X. Since

R2 is (quasi-)Polish, R2 ∈ Π0
2(X) by Proposition 2.9. Since R2 is σ-compact and X is

Hausdorff, R2 ∈ Σ0
2(X), hence R2 ∈ ∆0

2(X). Therefore the result follows from Corol-

lary 5.5.

Finally, let X be either an n-dimensional σ-compact Polish space which is embeddable

into Rn (for some n ≥ 2), or a locally Euclidean Polish space of dimension n ≥ 2. Then

X ∼=2 Rn by Remark 4.22(2)(a-b), and hence the desired claim follows from Proposi-

tion 5.2 and the fact that we already proved the analogous result for Rn.

Unfortunately, for what concerns the Dn-hierarchies (n ≥ 3) on uncountable quasi-

Polish spaces of dimension ∞, the situation is still completely unclear.

Question 5.30. Are the D3-hierarchies on the Hilbert cube [0, 1]ω and on the Scott

domain Pω (very) good? What about the Dn-hierarchies (for larger n ∈ ω)? What about

other (quasi-)Polish spaces of dimension ∞?

5.2. Degree structures in countable spaces

Here we consider the case of countable quasi-Polish spaces and show that even when

considering the very restricted class of scattered countably based spaces, the Wadge

hierarchy may not be very good.

It follows from Proposition 4.5(1) and Proposition 5.2 that all countable countably

based T0-spaces X have isomorphic F-hierarchies whenever F ⊇ DW
3 is a family of

reducibilities. Moreover, it follows from parts (2) and (3) of Proposition 4.5 and Propo-

sition 5.2 that all countable T1-spaces and all scattered countably based spaces X have

isomorphic F-hierarchies whenever F ⊇ DW
2 . In fact, the proof of Proposition 4.5 shows

that in all the above mentioned cases, the class F(X) coincides with the class of all func-

tions from X to itself: hence the resulting F-hierarchy is formed by two incomparable

degrees consisting of ∅ and the whole space X, together with a single degree above them

containing all other subsets of X (this in particular means that the F-hierarchy on X is

very good). Therefore only the Wadge reducibility and the D2-reducibility are of interest

when considering countable countably based T0-spaces X, and when X is a countable T1
space or a countably based scattered space, then only the Wadge reducibility needs to

be considered.

The next result identifies two classes of countable spaces with a very good structure

of Wadge degrees.

Proposition 5.31. Let X be a countable Polish space or a finite T0-space. Then the

D1-structure on X is very good.
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Proof. If X is countable Polish then it is zero-dimensional, hence the claim follows

from Theorem 5.12 and the fact that P(X) ⊆∆0
2(X).

Let now X be a finite T0-space, and let ≤ be the specialization order on X defined by

setting x ≤ y ⇐⇒ x belongs to the closure of {y} (for every x, y ∈ X). Then X coin-

cides with the ω-algebraic domain (X,≤) (endowed with the Scott or, equivalently, the

Alexandrov topology), and the continuous functions on X coincide with the monotone

functions on (X,≤). Moreover, any subset of X is a finite Boolean combination of open

sets, hence it is in
⋃
n∈ω Σ−1n =

⋃
n∈ω Π−1n =

⋃
n∈ω ∆−1n . By (the second part of) Theo-

rem 2.7, this implies that every subset of X is Wadge complete in one of Σ−1n ,Π−1n ,∆−1n ,

n ∈ ω: therefore, (P(X),≤W) is semi-well-ordered.

Remark 5.32. In both the cases considered in Proposition 5.31, the space X falls in

one of the cases mentioned at the beginning of this subsection: if X is Polish then it is

also T1, while if X is finite then it is automatically scattered. Therefore the D2-hierarchy

on such an X is always (trivially) very good.

We now show that Proposition 5.31 cannot be extended to scattered quasi-Polish

spaces by showing that there is a scattered ω-continuous domain whose Wadge hierarchy

is good but not very good. Note that by Proposition 2.5, any scattered dcpo is in fact

an algebraic domain and all of its elements are compact.

Proposition 5.33. There is a scattered ω-algebraic domain (X,≤) such that (P(X),≤W

) has four pairwise incomparable elements (hence it is not very good).

Proof. For any n ∈ ω, fix an ≤-chain Cn = {cnn < . . . < cn0} with n+ 1-many elements.

Let C =
⊔
n∈ω Cn be the disjoint union of these chains (so the elements of different chains

are ≤-incomparable in C), and let X be obtained from C by adjoining a bottom element

⊥ and a top element >. By Proposition 2.5, X is a scattered ω-algebraic domain.

We inductively define the sets Dk ⊆ X, k ∈ ω, by letting D0 = {x ∈ X | ∃n(cn0 ≤ x)}
and Di+1 = Di ∪ {x ∈ X | ∃n > i(cni+1 ≤ x)}. Then D0 ⊆ D1 ⊆ . . . and any Dk is open

in X, so the sets A = D0 ∪
⋃
k(D2k+2 \D2k+1) and B = A \ {>} are in the pointclass

Σ−1ω (X), i.e. in the ω-th level of the Hausdorff difference hierarchy over the open sets in

X (see Subsection 2.3). Observe that for all k < n ∈ ω we have ⊥ 6∈ Dk, cn0 ∈ D0, and

cnk+1 ∈ Dk+1 \Dk. Therefore, for k ≤ n ∈ ω we have ⊥ 6∈ A∪B, cnk ∈ A∩B if k is even,

and cnk 6∈ A ∪ B if k is odd. This means that for each of A and B one can construct in

the obvious way a 0-alternating tree onto X \ {>} = {⊥, cnk | k ≤ n ∈ ω}, so A,B /∈ Π−1ω
by (the first part of) Theorem 2.7.

We claim that the sets A,A,B,B are pairwise Wadge incomparable. Since any of

Σ−1α ,Π−1α , being a family of pointclasses, is closed under continuous preimages, the fact

that A,B ∈ Σ−1ω \Π−1ω implies that each of A,B is Wadge incomparable with both A

and B. So it remains only to check that A is Wadge incomparable with B: we will just

show that A 6≤W B, as the fact that B 6≤W A can be proved in the same way. Assume

towards a contradiction that A = f−1(B) for a continuous (i.e. monotone) function f on

X. Since > ∈ A and > 6∈ B, f(>) 6= >, hence f(>) ∈ X \ {>} = {⊥, cnk | k ≤ n ∈ ω}.
Since f(x) ≤ f(>) for all x ∈ X, the range of f is contained in Cm ∪ {⊥} for some

m < ω. Choose an alternating chain a0 < . . . < am+2 for A of length m+ 3 (e.g. we can
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take ai = cm+2
m+2−i for i ≤ m + 2). Then, since f is supposed to be a reduction of A to

B, the image under f of this chain must be alternating for B. Since, as already observed

in Subsection 2.4, this implies f(a0) < . . . < f(am+2), we have |{f(ai) | i ≤ m + 2}| =

m+ 3 > m+ 2 = |Cm ∪ {⊥}| ≥ |{f(x) | x ∈ X}|, a contradiction.

Notice that in the example above the four Wadge incomparable elements have (almost)

the minimal possible complexity, as by (the second part of) Theorem 2.7 the Wadge

hierarchy on any ω-algebraic domain is semi-well-ordered when restricted to
⋃
n∈ω Σ−1n .

Moreover, since the structure of the poset (X,≤) in the previous proof is very simple, it

is possible to completely describe the Wadge hierarchy on X, as it is shown in the next

proposition.

Let (P,≤P ) and (Q,≤Q) be arbitrary posets. By P +Q we denote the poset (P tQ,≤)

where ≤ � P (respectively, on ≤ � Q) coincides with ≤P (respectively, with ≤Q), and

p ≤ q for all p ∈ P and q ∈ Q. By P · Q we denote the poset (P × Q,≤) where

(p0, q0) < (p1, q1) if and only if q0 <Q q1 or q0 = q1 ∧ p0 <P p1. For any integer n ≥ 2,

let n̄ denote the poset consisting of exactly one antichain with n elements, and identify

ω with the poset (ω,≤).

Proposition 5.34. The quotient-poset of (P(X),≤W) is isomorphic to (2̄·ω)+4̄. Hence

the W-hierarchy on X is good but not very good.

Proof. Let us first make a basic observation which is intimately related to the very

particular structure of the poset (X,≤). Given S ⊆ X, call an alternating chain a0 <

. . . < an for S maximal if for every b < a0 and b′ > an none of b < a0 < . . . < an
and a0 < . . . < an < b′ is alternating for S. Notice that if a0 < . . . < an is a maximal

alternating chain for S, then a0 ∈ S ⇐⇒ ⊥ ∈ S and an ∈ S ⇐⇒ > ∈ S (otherwise

one of ⊥ < a0 < . . . < an or a0 < . . . < an < > would be alternating, contradicting

the maximality of the chain). This also implies that all maximal alternating chains are

compatible, i.e. that if a′0 < . . . < a′n′ is another maximal alternating chain for S then

a′0 ∈ S ⇐⇒ a0 ∈ S and a′n′ ∈ S ⇐⇒ an ∈ S.

Let now S be the class of all ∅ 6= S ( X such that there is a natural number n

bounding the lengths of all alternating chains for S. We will use Theorem 2.7 to show

that each S ∈ S belongs to some finite level of the difference hierarchy over the open

sets of X. First notice that every S ∈ S (in fact, every S ⊆ X) is approximable because

all elements of X are compact. Given S ∈ S, let m(S) + 1 be the maximal length of an

alternating chain for S, so that, in particular, there is an alternating tree for S of rank

m(S) but no alternating tree for S of rank m(S) + 1. Notice that by definition of S,

we necessarily have m(S) ≥ 1. Let a0 < . . . < am(S) be an alternating chain for S of

length m(S) + 1. By definition of m(S), such a chain is necessarily maximal, hence by

the compatibility of the maximal alternating chains for S there is no alternating chain

b0 < . . . < bm(S) for S such that a0 ∈ S ⇐⇒ b0 /∈ S. This means that all alternating

trees for S of rank m(S) are of the same type, i.e. either they are all 1-alternating or

they are all 0-alternating (depending on whether ⊥ ∈ S or not). Then by Theorem 2.7,

either S ∈ Π−1m(S)(X) \Σ−1m(S)(X) or S ∈ Σ−1m(S)(X) \Π−1m(S)(X), hence S is also Wadge

complete in (exactly) one of Σ−1m(S)(X) or Π−1m(S)(X).
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Conversely, it is not hard to check that all the possibilities are realized, i.e. that

Σ−1n (X) \ Π−1n (X) 6= ∅ for every 1 ≤ n ∈ ω. In fact, let A,B be defined as in the

proof of Proposition 5.33, and put C ′n = Cn ∪ {⊥,>} for every n ∈ ω. Then one can

straightforwardly check using Theorem 2.7 that A∩C ′2i ∈ Σ−12i+1(X)\Π−12i+1(X), A∩C ′2i ∈
Π−12i+1(X)\Σ−12i+1(X),B∩C ′2i ∈ Σ−12i+2(X)\Π−12i+2(X), andB∩C ′2i ∈ Π−12i+2(X)\Σ−12i+2(X)

for every i ∈ ω.

Therefore, letting h(∅) = (0, 0), h(X) = (1, 0), and, for S ∈ S, h(S) = (0,m) (respec-

tively, h(S) = (1,m)) if and only if S is Wadge complete in Σ−1m (X) (respectively, in

Π−1m (X)), we get that the function h : S∪{∅, X} → 2̄ ·ω induces an isomorphism between

the quotient-poset of (S ∪ {∅, X},≤W) and 2̄ · ω.

Now assume that S ⊆ X has arbitrarily long finite alternating chains, i.e. that S 6= ∅, X
and S /∈ S. Obviously, ∅, X ≤W S. We claim that also every set from S is Wadge reducible

to S. In fact, let S′ ∈ S and m = m(S′). Let a0 < . . . am+1 be an alternating chain for

S such that a0 ∈ S ⇐⇒ ⊥ ∈ S′ (such a chain exists by the choice of S). Consider

the function f : X → {a0, . . . , am+1} defined in the following way: first, f(⊥) = a0 and

f(>) = am+1. Then fix n ∈ ω, and define f on cnn−i by induction on i ≤ n as follows.

For i = 0, set f(cnn) = a0 if cnn ∈ S′ ⇐⇒ ⊥ ∈ S′ and f(cnn) = a1 otherwise. For the

inductive step, let f(cnn−i) = aj , and set f(cnn−(i+1)) = aj if cnn−i ∈ S′ ⇐⇒ cnn−(i+1) ∈ S
′

and f(cnn−(i+1)) = aj+1 otherwise. Then f is clearly monotone (hence continuous) and

reduces S′ to S.

Using essentially the same method as in the previous paragraph, for every C ∈
{A,B,A,B} (where A,B are again defined as in the proof of Proposition 5.33) one

can easily define two monotone functions f ′, g′ : X \ {⊥,>} → X \ {⊥,>} such that

x ∈ C ⇐⇒ f ′(x) ∈ S and x ∈ S ⇐⇒ g′(x) ∈ C for all x ∈ X \ {⊥,>} (i.e. f ′

and g′ are partial continuous reduction of, respectively, C to S and S to C). Extend f ′

and g′, respectively, to the functions f, g : X → X by setting f(⊥) = g(⊥) = ⊥ and

f(>) = g(>) = >. Then it is straightforward to check that f and g are continuous, and

that they witness exactly one of the following four possibilities:

(1) S ≡W A (in case > ∈ S,⊥ 6∈ S);

(2) S ≡W B (in case > 6∈ S,⊥ 6∈ S);

(3) S ≡W A (in case > 6∈ S,⊥ ∈ S);

(4) S ≡W B (in case > ∈ S,⊥ ∈ S).

Therefore, we can extend h in the obvious way to the desired isomorphism between the

quotient-poset of (P(X),≤W) and the poset (2̄ · ω) + 4̄.

By the previous proof, the n-th level of the Wadge hierarchy on X (for n ∈ ω) is

occupied by the pair of Wadge degrees (Σ−1n (X) \Π−1n (X),Π−1n (X) \ Σ−1n (X)), while

the four Wadge degrees on the top of the hierarchy are exactly [A]W, [B]W , [A]W, and

[B]W, where A,B ⊆ X are defined as in the proof of Proposition 5.33.

Remark 5.35. Contrarily to the case of Polish spaces, there is no obvious relation

between the dimension of a scattered ω-algebraic domain and the Wadge hierarchy on

it. For example, the dimension of the space X considered in Propositions 5.33 and 5.34

is ω, and the Wadge hierarchy on X is (good but) not very good. On the other hand,
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the dimension of the space C∞ from Example 4.15(2) is ∞, while the Wadge hierarchy

on C∞ is very good, as one can easily check using an argument similar to the one of

Proposition 5.34.

We end this subsection with some natural questions that are left open by Proposi-

tions 5.33 and 5.34.

Question 5.36.

(1) Is there a countable quasi-Polish space X with a (very) bad D1-hierarchy?

(2) Is there a (necessarily non scattered) quasi-Polish space whose D2-hierarchy is not

very good? If yes, can it be even (very) bad?

(3) Is there a (necessarily uncountable) Polish space whose Dα-hierarchy is good but not

very good (for some 1 ≤ α < ω1)? Notice that by Theorem 5.15 the D1-hierarchy on

any Polish space X is either very good or bad, depending on whether dim(X) = 0 or

not.
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